
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 1

“The purpose of computing is insight, not numbers”

Richard Hamming

“I hear and I forget,
I see and I remember,
I do and I understand.”

Confucious

This course is an introduction to MATLAB, a powerful
programming language and development environment for
engineers and scientists.

Syllabus and other course materials can be found in:

https://sakai.rutgers.edu

MATLAB = Matrix Laboratory (Cleve Moler)

MATLAB ® is a registered trademark of The Mathworks
Inc., http://www.mathworks.com

MATLAB & Simulink Student Version

exam dates,
lecture notes,
homeworks, etc.

https://sakai.rutgers.edu/
http://www.mathworks.com/
http://www.mathworks.com/academia/student_version/?s_cid=global_nav

• Easy and efficient programming in a high-level language, with
an interactive interface for rapid development.

• Vectorized computations for efficient programming, and
automatic memory allocation.

• Built-in support for state-of-the-art numerical computing
methods.

• Has variety of modern data structures and data types,
including complex numbers.

• High-quality graphics and visualization.

Main Features of MATLAB

• Symbolic math toolbox for algebraic and calculus operations,
and solutions of differential equations.

• Simulation capability with SIMULINK.

• Portable program files across platforms.

• Large number of add-on toolboxes for applications and
simulations.

• Huge database of user-contributed files & toolboxes, including
a large number of available tutorials & demos.

• Allows extensions based on other languages, such as C/C++,
supports Java and object-oriented programming.

• Parallel Computing (2)
• Math, Statistics, and Optimization (8)
• Control System Design and Analysis (6)
• Signal Processing and Communications (7)
• Image Processing and Computer Vision (4)
• Test and Measurement, Data Acquisition (5)
• Computational Finance, Datafeeds (5)
• Computational Biology (2)
• Code Generation and Application Deployment (7)
• Database Connectivity (2)

MATLAB Toolbox Application Areas

(48 toolboxes)

• Fixed-Point and Event-Based Modeling
• Physical Modeling (mechanics, driveline, hydraulics, RF,

electronics, power systems, biology)
• Control Systems (design, optimization, aerospace)
• Signal & Image Processing and Computer Vision
• Communication Systems (digital, analog, wireless)
• Code Generation (for embedded systems, DSP chips and

FPGAs)
• more

SIMULINK Applications

• Getting Started with MATLAB (HTML)
• Getting Started with MATLAB (PDF)
• MATLAB Examples
• MATLAB Online Tutorials and Videos
• MATLAB Interactive Tutorials
• MATLAB Toolbox Reference Manuals
• MATLAB Interactive CD
• Newsletters

• MATLAB User Community
• Other MATLAB Online Resources
• comp.soft-sys.matlab newsgroup

• Octave – a free look-alike version of MATLAB

• NIST – Digital Library of Mathematical Functions
• NIST – Physical Constants

Web Resources

http://www.mathworks.com/help/techdoc/learn_matlab/bqr_2pl.html
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://www.mathworks.com/help/techdoc/demo_example.html
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
http://www.mathworks.com/academia/student_center/tutorials/index.html?link=body
http://www.mathworks.com/help/index.html
http://www.mathworks.com/programs/matlab_cd/
http://www.mathworks.com/company/newsletters/
http://www.mathworks.com/matlabcentral/
http://www.eece.maine.edu/mm/matweb.html
http://groups.google.com/group/comp.soft-sys.matlab/topics
http://www.gnu.org/software/octave/
http://dlmf.nist.gov/
http://physics.nist.gov/cuu/Constants/index.html

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output formatting – fprintf, sprintf (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

1. MATLAB desktop
2. MATLAB editor
3. Getting help
4. Variables, built-in constants, keywords
5. Numbers and formats
6. Arrays and matrices
7. Operators and expressions
8. Functions
9. Basic plotting
10. Function maxima and minima
11. Relational and logical operators
12. Program flow control
13. Matrix algebra and linear equations

MATLAB Basics

These should be enough to get you started. We will explore
them further, as well as other topics, in the rest of the course.

week 1

week 2

command window,
enter commands
at prompt

move, minimize,
resize, closenavigate to

desired folder

doubleclick
to edit M-file

workspace
window

command
history

current
folder

view details
about selected
file

choose
desktop layout

to array editor

set search
path

1. MATLAB Desktop

Help

switch to
command window

2. MATLAB Editor

Several ways of getting help:

1) help menu item on MATLAB desktop opens up searchable
help browser window

2) from the following commands:

>> helpdesk % open help browser
>> help topic % e.g., help log10
>> doc topic % e.g., doc plot
>> help % get list of all help topics
>> help dir % get help on entire directory
>> help syntax % get help on MATLAB syntax
>> help / % operators & special characters
>> docsearch text % search HTML browser for ‘text’
>> lookfor topic % e.g., lookfor acos

comments begin with %

3. Getting Help

4. Variables, Constants, Keywords

Variables require no special declarations of type or
storage. Examples:

>> x = 3; % simple scalar
>> y = [4, 5, 6]; % row vector of length 3
>> z = [4; 5; 6]; % column vector of length 3
>> A = [1,2,3; 4,5,6]; % 2x3 matrix

>> s = 'abcd efg'; % string

>> s = {'abc', 'defg', '123-456'}; % cell array

math notation

>> x = 3
x =

3

>> y = [4, 5, 6]
y =

4 5 6

>> z = [4; 5; 6] % note, z = y'
z =

4
5
6

>> A = [1 2 3; 4 5 6]
A =

1 2 3
4 5 6

What are your variables? How to clear them?
Use workspace window, or the commands:

who, whos, clear, clc, close

>> who
Your variables are:
A y z

>> whos
Name Size Bytes Class Attributes
A 2x3 48 double
y 1x3 24 double
z 3x1 24 double

>> clear all % clear all variables from memory
>> clc % clear command window
>> close all % close all open figures

Operating system commands:

>> path % display search path
>> pathtool % modify search path
>> addpath dir % add directory to path

>> cd dir % change directory
>> pwd % print working directory

>> dir % list all files in current dir
>> what % list MATLAB files only
>> which file % display location of file

>> edit file % invoke MATLAB editor

>> quit % quit MATLAB
>> exit % quit MATLAB

Special built-in math constants that should not
(though they can) be re-defined as variables:

eps % machine epsilon - floating-point accuracy
i,j % imaginary unit, i.e., sqrt(-1)
Inf,inf % infinity
intmax % largest value of specified integer type
intmin % smallest value of specified integer type
NaN,nan % not-a-number, e.g., 0/0, inf/inf
pi % pi
realmax % largest positive floating-point number
realmin % smallest positive floating-point number

Note: i,j are commonly used for array and matrix indices. If you’re
dealing with complex-valued data, avoid redefining both i,j.

Values of special constants:

>> eps % equal to 2^(-52)
ans =

2.2204e-016 % MATLAB’s floating-point accuracy
% i.e., 2.2204 * 10^(-16)

>> intmax % 2^(31)-1 for 32-bit integers
ans =

2147483647

>> intmin % equal to -2^(31)
ans =
-2147483648

>> realmax % equal to (2-eps)*2^(1023)
ans =

1.7977e+308 % i.e., 1.7977 * 10^(308)

>> realmin % 2^(-1022) = 2.2251 * 10^(-308)
ans =

2.2251e-308

Special keywords that cannot be used
as variable names:

>> iskeyword

ans =
'break'
'case'
'catch'
'classdef'
'continue'
'else'
'elseif'
'end'
'for'

'function'
'global'
'if'
'otherwise'
'parfor'
'persistent'
'return'
'switch'
'try'
'while'

'true' , 'false'

5. Numbers and Formats

MATLAB by default uses double-precision (64-bit)
floating-point numbers following the IEEE floating-point
standard. You may find more information on this
standard in:

Representation of Floating-Point Numbers

C. Moler, "Floating Points," MATLAB News and Notes,
Fall, 1996 (PDF file)

x = (-1)^s * (1+f) * 2^(e-1023)

1 bit 52 bits 11 bits
sign mantissa exponent

1 <= e <= 2046, e=0, e=2047

0 <= f < 1
f_min = eps = 2^(-52)

machine epsilon

http://www.mathworks.com/support/tech-notes/1100/1108.html
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

MATLAB can also use single-precision (32-bit) floating
point numbers if so desired.

There are also several integer data types that are useful
in certain applications, such as image processing or
programming DSP chips. The integer data types have
8, 16, 32, or 64 bits and are signed or unsigned:

int8, int16, int32, int64
uint8, uint16, uint32, uint64

For more information do:

>> help datatypes
>> help class % determine datatype

By default, MATLAB treats all numbers and expressions as
complex (even if they are real).

No special declarations are needed to handle complex-number
operations. Examples:

>> z = 3+4i; % or, 3+4j, 3+4*i, 3+4*j
>> x = real(z); % real part of z
>> y = imag(z); % inaginary part of z
>> R = abs(z); % absolute value of z
>> theta = angle(z); % phase angle of z in radians
>> w = conj(z); % complex conjugate, w=3-4i
>> isreal(z); % test if z is real or complex

Complex Numbers

cartesian & polar forms math notation: θ = Arg(z)

>> z = 3+4j
z =

3.0000 + 4.0000i

>> x = real(z)
x =

3
>> y = imag(z)
y =

4
>> R = abs(z)
R =

5
>> theta = angle(z) % in radians
theta =

0.9273

>> abs(z - R*exp(j*theta)) + abs(z-x-j*y) % test
ans =
6.2804e-016

equivalent definitions:

z = 3+4*j
z = 3+4i
z = 3+4*i
z = complex(3,4)

Display Formats
>> format % default - 4 decimal places
>> format short % same as the default
>> format long % 15 decimal places
>> format short e % 4 decimal – exponential format
>> format short g % 4 decimals – exponential or fixed
>> format long e % 15 decimals - exponential
>> format long g % exponential or fixed
>> format shorteng % 4 decimals, engineering
>> format longeng % 15 decimals, engineering
>> format hex % hexadecimal
>> format rat % rational approximation
>> format compact % conserve vertical spacing
>> format loose % default vertical spacing

>> vpa(x,digits) % variable-precision-arithmetic

These affect only the display format – internally all
computations are done with full (double) precision

Example - displayed value of 10*pi in different formats:

31.4159 % format, or format short
31.415926535897931 % format long
3.1416e+001 % format short e
31.416 % format short g
3.141592653589793e+001 % format long e
31.4159265358979 % format long g
31.4159e+000 % format shorteng
31.4159265358979e+000 % format longeng

>> vpa(10*pi) % symbolic toolbox
ans =
31.415926535897932384626433832795

>> vpa(10*pi,20) % specify number of digits
ans =
31.415926535897932385

>> help format
>> help vpa
>> help digits

>> x = 10; disp('the value of x is:'); disp(x);
the value of x is:

10

>> x = input('enter x: ') % numerical input
enter x: 100 % 100 entered by user
x =

100

>> y = input('enter string: ', 's'); % string input
enter string: abcd efg
>> y = input('enter string: ')
enter string: 'abcd efg'
y =
abcd efg

input/output functions: disp, input

prompt string in single quotes

string entered with no quotes
string entered in quotes

>> help disp
>> help input
>> help menu

>> help fprintf
>> help sprintf

6. Arrays and Matrices

a) row and column vectors
b) transposition operator, '
c) colon operator, :
d) equally-spaced elements, linspace
e) accessing array elements
f) dynamic allocation & de-allocation
g) pre-allocation

arrays and matrices are the most
important data objects in MATLAB

We discuss briefly:

The key to efficient MATLAB programming
can be summarized in three words:

vectorize, vectorize, vectorize

and avoid all loops

Compare the two alternative computations:

x = [2,-3,4,1,5,8];
y = zeros(size(x));
for n = 1:length(x)

y(n) = x(n)^2;
end

x = [2,-3,4,1,5,8];
y = x.^2;

element-wise exponentiation .^
ordinary exponentiation ^

answer: y = [4,9,16,1,25,64]

>> x = [0 1 2 3 4 5] % row vector
x =

0 1 2 3 4 5

>> x = 0:5 % row vector
x =

0 1 2 3 4 5

>> x = [0 1 2 3 4 5]' % column vector, (0:5)'
x =

0
1
2
3
4
5

the prime operator, ', or transpose, turns row
vectors into column vectors, and vice versa

caveat: ' is actually conjugate transpose,
use dot-prime, .' , for transpose w/o conjugation

>> z = [i; 1+2i; 1-i] % column vector
z =

0 + 1.0000i
1.0000 + 2.0000i
1.0000 - 1.0000i

>> z.' % transpose without conjugation
ans =

0 + 1.0000i 1.0000 + 2.0000i 1.0000 - 1.0000i

>> z' % transpose with conjugation
ans =

0 - 1.0000i 1.0000 - 2.0000i 1.0000 + 1.0000i

>> (z.')' % same as (z').' , or, conj(z)
ans =

0 - 1.0000i
1.0000 - 2.0000i
1.0000 + 1.0000i

about linspace:

x = linspace(a,b,N+1);

is equivalent to:

x = a : (b-a)/N : b;

i.e., N+1 equally-spaced points in the interval [a,b]
or, dividing [a,b] into N equal sub-intervals

>> x = 0 : 0.2 : 1 % in general, x = a:s:b
>> x = linspace(0,1,6) % see also logspace
x =

0 0.2000 0.4000 0.6000 0.8000 1.0000

step
increment

6 points, 5 subintervals

>> x = 0 : 0.3 : 1
x =

0 0.3 0.6 0.9

>> x = 0 : 0.4 : 1
x =

0 0.4 0.8

>> x = 0 : 0.7 : 1
x =

0 0.7

% before rounding, (b-a)/s was in the three cases:
% 1/0.3 = 3.3333, 1/0.4 = 2.5, 1/0.7 = 1.4286

x = a : s : b;

the number of subintervals
within [a,b] is obtained by
rounding (b-a)/s, down
to the nearest integer,

N = floor((b-a)/s);

length(x) is equal to N+1

x(n) = a + s*(n-1),
n = 1,2,...,N+1

step increment

Note: MATLAB array indices always start with 1
and may not be 0 or negative

>> x = [2, 5, -6, 10, 3, 4];

x(1), x(2), x(3), x(4), x(5), x(6)

Other languages, such as C/C++ and Fortran, allow
indices to start at 0. For example, the same array
would be declared/defined in C as follows:

double x[6] = { 2, 5, -6, 10, 3, 4 };

x[0], x[1], x[2], x[3], x[4], x[5]

rule of thumb: M = C + 1

exception:
logical indexing,
discussed later

accessing array entries:

>> x = [2, 5, -6, 10, 3, 4]
x =

2 5 -6 10 3 4

>> length(x) % length of x, see also size(x)
ans =

6

>> x(1) % first entry
ans =

2

>> x(3) % third entry
ans =

-6

>> x(end) % last entry – need not know length
ans =

4

accessing array entries:

>> x(end-3:end) % x = [2, 5, -6, 10, 3, 4]
ans =

-6 10 3 4 % last four

>> x(3:5) % list third-to-fifth entries
ans =

-6 10 3

>> x(1:3:end) % every third entry
ans =

2 10

>> x(1:2:end) % every second entry
ans =

2 -6 3

accessing array entries:

>> x = [2, 5, -6, 10, 3, 4];

>> x(end:-1:1) % list backwards, same as fliplr(x)
ans =

4 3 10 -6 5 2

>> x([3,1,5]) % list [x(3),x(1),x(5)]
ans =

-6 2 3

>> x(end+3) = 8
x =

2 5 -6 10 3 4 0 0 8

automatic memory re-allocation

automatic memory allocation and de-allocation:

>> clear x

>> x(3) = -6
x =

0 0 -6

>> x(6) = 4
x =

0 0 -6 0 0 4

>> x(end) = [] % delete last entry
x =

0 0 -6 0 0

>> x = [2, 5, -6, 10, 3, 4];
>> x(3)=[] % delete third entry
x =

2 5 10 3 4

pre-allocation

>> clear x
>> x = zeros(1,6) % 1x6 array of zeros
x =

0 0 0 0 0 0

>> x = zeros(6,1) % 6x1 array of zeros
x =

0
0
0
0
0
0

Pre-allocation is useful for very large arrays, e.g.,
length > 10^4, for example, in dealing with
audio or image files, or finite-element methods.

See, for example, the program echoes.m, which
reads an audio file and adds reverberation effects
to it, as described in echoes.pdf, and discussed
also in week-2 lectures.

>> help zeros
>> help ones

clear x;
for k=[3,7,10] % k runs successively through

x(k) = 3 + 0.1*k; % the values of [3,7,10]
disp(x); % diplay current vector x

end

0.0 0.0 3.3
0.0 0.0 3.3 0.0 0.0 0.0 3.7
0.0 0.0 3.3 0.0 0.0 0.0 3.7 0.0 0.0 4.0

x = zeros(1,10); % pre-allocate x to length 10
for k=[3,7,10]

x(k) = 3 + 0.1*k;
disp(x);

end

0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 3.3 0.0 0.0 0.0 3.7 0.0 0.0 0.0
0.0 0.0 3.3 0.0 0.0 0.0 3.7 0.0 0.0 4.0

illustrating dynamic allocation & pre-allocation

Example: Octave Frequency Scales

• Tasks:

• calculate and plot the 88 frequencies of a standard 88-key piano
keyboard

• introduce the concept of octave frequency scales

• generate and print the major notes (do, re, mi, fa, sol, la, si, do) of
the middle (4th) octave, and play them forward & backward on the
PC’s soundcard (need earphones in the DSV lab)

Complete MATLAB program is in the M-file, octaves.m.
Please, see also the handout, octaves.pdf, for more details.

octaves = log

2 0
()f

f f f = . 20
octaves

y t f t() = sin(2)π

standard 88-key piano keyboard

440 Hz
24

880 Hz
25

1760 Hz
26

3520 Hz
27

27.5 Hz
20

55 Hz
21

110 Hz
22

220 Hz
23

A4A2 A3 C A5A1A0 A6 A7

1 2 3 4 5 6 7

generate tone and
send it to MATLAB’s
sound() function

Running the program, octaves.m, in command window:

>> octaves; % run the program

>> close all; % close figure windows

>> publish('octaves', 'html'); % export to HTML

publishing your programs to HTML is a good way to print and submit
your homework problems. However, you must re-save it as a single file
web archive (i.e., MHT file) that incorporates all the generated graphs
(for Firefox you must install the Mozilla-Archive-Format add-on).

Alternatively, you can use any word processor and insert into it your
MATLAB code and your graphs in WMF or EPS formats (this allows
you to submit a single file, and preferably convert it into a PDF)

https://addons.mozilla.org/en-US/firefox/addon/mozilla-archive-format/

octaves = log

2 0
()f

f f f = . 20
octaves

440 Hz
24

880 Hz
25

1760 Hz
26

3520 Hz
27

27.5 Hz
20

55 Hz
21

110 Hz
22

220 Hz
23

A4A2 A3 C A5A1A0 A6 A7

1 2 3 4 5 6 7

key, k=0 key, k=87

keys, k = [0, 1, 2, …, 87]

keys are separated by
1/12 of an octave

f0 = 27.5;
k = 0:87;
f = f0 * 2.^(k/12);
figure; plot(k,f);

MATLAB code
from file
octaves.m

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

plain vanilla plot with system default
choices for axes limits, tick marks,
and no labels

0 12 24 36 48 60 72 84
0

440
880

1320
1760
2200
2640
3080
3520
3960

frequencies on a piano keyboard

k, piano key

f
 (H

z)

 all 88 keys
 'A' keys only

ka = 0:12:87;
fa = f(ka+1);
figure; plot(k,f, ka,fa,'ro');

% ka = [0, 12, 24, 36, 48, 60, 72, 84]
% fa = [27.5, 55, 110, 220, 440, 880, 1760, 3520]

red color, open circles

Next, we add commands to annotate the graph
with axis labels, axis limits, tick marks, grid, title,
and legends

>> help plot

note: we defined fa as a subset of f,
but we could have defined it directly as,

fa = f0 * 2.^(ka/12);

plot fa vs. ka,
i.e., ‘A’ keys

ka = 0:12:87;
fa = f(ka+1);
figure; plot(k,f, ka,fa,'ro');

set axis limits
and tick marks

% ka = [0, 12, 24, 36, 48, 60, 72, 84]
% fa = [27.5, 55, 110, 220, 440, 880, 1760, 3520]

xlim([0,87]); set(gca,'xtick', 0:12:87);
ylim([0,4200]); set(gca,'ytick', 0:440:4000);
title('frequencies on a piano keyboard');
xlabel('{\itk}, piano key');
ylabel('{\itf} (Hz)');
legend(' all 88 keys', ' ''A'' keys only', 'location', 'nw');
grid on;
print –depsc octave2.eps % save plot in color EPS file
print –dmeta octave2.wmf % save plot in windows metafile

plot fa vs. ka,
i.e., ‘A’ keys

red color, open circles

note: we defined fa as a subset of f,
but we could have defined it directly as,

fa = f0 * 2.^(ka/12);

C#
Db

D#
Eb

F#
Gb

G#
Ab

A#
Bb

C#
Db

D#
Eb

F#
Gb

G#
Ab

A#
Bb

3d octave

middle C
261.63 Hz

A3
220 Hz

261.63 = 220 . 2 = 440 . 2-3/12 9/12

A4
440 Hz

4th octave

C D E F G A B C CB D

0

E F G A B

1 2 3 4 5 6 7 8 9 10 11 12

4th octave keys, k = 0:12, MATLAB index = k+1 = 1:13

major keys are a subset of k, m = [0, 2, 4, 5, 7, 9, 11, 12]

middle C is 3/12 of an
octave above A3, or,
9/12 octaves below A4

fc = 220 * 2^(3/12); % middle C frequency
k = 0:12; % keys in 4th octave only
f = fc * 2.^(k/12); % frequencies of 4th octave

% fc = 440 * 2^(-9/12); % alternative calculation

calculate frequencies in 4th octave

Next, for each f of the major keys,
we generate a tone of half-second
duration & play it on the PC’s sound
card (at the card’s default sampling
rate, fs = 8192 samples/sec):

y(t) = sin(2 π f t), 0 ≤ t ≤ 0.5 sec

time samples are spaced at the default
sampling interval T = 1/fs = 0.122 msec

0.5
sec

0

y(t)

t

i.e., t = 0 : T : 0.5

fs = 8192; T = 1/fs; % default sampling rate
Tmax = 0.5; % half-second duration for notes
t = 0:T:Tmax; % length(t) = 4097 points

% steps of T = 1/fs = 0.1221 msec

m = [0 2 4 5 7 9 11 12]; % major keys in 4th octave
% CDEFGABC = do re mi fa sol la si do

for i=m+1, % m+1 = [1 3 5 6 8 10 12 13]
y = sin(2*pi*f(i)*t); % y has half-second duration
sound(y,fs); % play y at rate fs

end

pause; % pause until a key is depressed

for i=fliplr(m+1), % fliplr(m+1)=[13 12 10 8 6 5 3 1]
y = sin(2*pi*f(i)*t);
sound(y,fs); % play them in reverse order

end

generate & play major notes in 4th octave

k oct=k/12 f=fc*2^(k/12) keys
--
0 0.0000 261.63 C do
1 0.0833 277.18 C#
2 0.1667 293.66 D re
3 0.2500 311.13 D#
4 0.3333 329.63 E mi
5 0.4167 349.23 F fa
6 0.5000 369.99 F#
7 0.5833 392.00 G sol
8 0.6667 415.30 G#
9 0.7500 440.00 A la
10 0.8333 466.16 A#
11 0.9167 493.88 B si
12 1.0000 523.25 C do

formatted printing of frequencies and key names

cell arrays

% formatted printing of frequencies and key names
% define cell arrays of key names to facilitate printing

keys = {'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#',...
'A', 'A#', 'B', 'C'};

doremi = {'do', '', 're', '', 'mi', 'fa', '', 'sol',...
'', 'la', '', 'si', 'do'};

fprintf('\n');
fprintf(' k oct=k/12 f=fc*2^(k/12) keys\n');
fprintf('--\n');
for i=k+1,
fprintf('%2d %1.4f %3.2f %s %s\n', ...

i-1, k(i)/12, f(i), keys{i}, doremi{i});
end

ellipsis
continues to
next line

>> help fprintf % formatted printing
>> doc fprintf

empty string

cell arrays use {…}

i-th entry of cell arrays

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani
	Example: Octave Frequency Scales

