Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department
orfanidi@ece.rutgers.edu

week 1

“The purpose of computing Is insight, not numbers”

Richard Hamming

“I hear and | forget,
| see and | remember,
| do and | understand.”

Confuclious

This course is an introduction to MATLAB, a powerful

programming language and development environment for
engineers and scientists.

Syllabus and other course materials can be found in:

exam dates,

https://sakal.rutgers.edu lecture notes,

homeworks, etc.

MATLAB = Matrix Laboratory (Cleve Moler)

MATLAB ® Is a registered trademark of The Mathworks
Inc., http://www.mathworks.com

MATLAB & Simulink Student Version

https://sakai.rutgers.edu/
http://www.mathworks.com/
http://www.mathworks.com/academia/student_version/?s_cid=global_nav

Main Features of MATLAB

Easy and efficient programming in a high-level language, with
an interactive interface for rapid development.

Vectorized computations for efficient programming, and
automatic memory allocation.

Built-in support for state-of-the-art numerical computing
methods.

Has variety of modern data structures and data types,
Including complex numbers.

High-quality graphics and visualization.

Symbolic math toolbox for algebraic and calculus operations,
and solutions of differential equations.

Simulation capability with SIMULINK.
Portable program files across platforms.

Large number of add-on toolboxes for applications and
simulations.

Huge database of user-contributed files & toolboxes, including
a large number of available tutorials & demos.

Allows extensions based on other languages, such as C/C++,
supports Java and object-oriented programming.

MATLAB Toolbox Application Areas

Parallel Computing (2)

Math, Statistics, and Optimization (8)

Control System Design and Analysis (6)

Signal Processing and Communications (7)
Image Processing and Computer Vision (4)

Test and Measurement, Data Acquisition (5)
Computational Finance, Datafeeds (5)
Computational Biology (2)

Code Generation and Application Deployment (7)
Database Connectivity (2)

(48 toolboxes)

SIMULINK Applications

Fixed-Point and Event-Based Modeling

Physical Modeling (mechanics, driveline, hydraulics, RF,
electronics, power systems, biology)

Control Systems (design, optimization, aerospace)
Signal & Image Processing and Computer Vision
Communication Systems (digital, analog, wireless)

Code Generation (for embedded systems, DSP chips and
FPGAS)

more

Web Resources

Getting Started with MATLAB (HTML)

Getting Started with MATLAB (PDF)
MATLAB Examples

MATLAB Online Tutorials and Videos
MATLAB Interactive Tutorials
MATLAB Toolbox Reference Manuals
MATLAB Interactive CD

Newsletters

MATLAB User Community
Other MATLAB Online Resources
comp.soft-sys.matlab newsqgroup

Octave — a free look-alike version of MATLAB

NIST — Digital Library of Mathematical Functions
NIST — Physical Constants

http://www.mathworks.com/help/techdoc/learn_matlab/bqr_2pl.html
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://www.mathworks.com/help/techdoc/demo_example.html
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
http://www.mathworks.com/academia/student_center/tutorials/index.html?link=body
http://www.mathworks.com/help/index.html
http://www.mathworks.com/programs/matlab_cd/
http://www.mathworks.com/company/newsletters/
http://www.mathworks.com/matlabcentral/
http://www.eece.maine.edu/mm/matweb.html
http://groups.google.com/group/comp.soft-sys.matlab/topics
http://www.gnu.org/software/octave/
http://dlmf.nist.gov/
http://physics.nist.gov/cuu/Constants/index.html

— | Week

Weekly Topics

1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)

Week 4 - Plotting — 2D and 3D plots (ch. 5)

Week 5 - User-defined functions (ch. 6)

Week 6 - Input-output formatting — fprintf, sprintf (ch. 7)

Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)

Week 9 - Structures & cell arrays (ch. 10)

Week 10 - Symbolic math (ch. 11)

Week 11 - Numerical methods — data fitting (ch. 12)

Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

MATLAB Basics

1. MATLAB desktop —

2. MATLAB editor

3. Getting help

4. Variables, built-in constants, keywords week 1
5. Numbers and formats

6. Arrays and matrices _

7. Operators and expressions —

8. Functions

9. Basic plotting

10. Function maxima and minima week 2
11. Relational and logical operators

12. Program flow control

13. Matrix algebra and linear equations |

These should be enough to get you started. We will explore
them further, as well as other topics, in the rest of the course.

1. MATLAB Desktop

choose move, minimize,

command window,
enter commands
at prompt

navigate to resize, close
desired folder

desktop layout

set search
path

) MATLAB 7.12.0 (R2011a)
File Edit Debug Qe}sktop Window he\pr

NS & Rm9 o @7 B | @ Qxent Folder:| E:\440-127\f11\examples\octaves \
+ Shortcuts (2] How to Add (2] What's New

Current Folder epp 0 and do O Workspace SO
() « f11 » examples » octaves - R E % >> A= 10 a6 P -
Name ~ Name = Value
= = Ha 10
== keyboard.cdr a ©ans <15 sy

9] octaves.html H eI p %5 [10,20,30]

#] octaves.m
a 0,0.7854,
& octaves.pdf 10 = ‘\%&mm
%] octaves.png —
) octaves.ppt >> a = 10;

octavesl.eps
octaves2.eps

dOUbleCIiCk [octaves3.eps

octaves4.eps Y

to edit M-file Sasi -—

3] octaves_03.png 10 20 30

—

] xaxis.m

> b = 110 20 303 to array editor

] actaves_04.png WOr k S p ace

) yaxis.m >> x = [0, pi/4, pi/3, pi/2, pil; y = sin(x)

window

< | >

¥y =

0 0.7071 0.8660 1.0000 0.0000

Command H... » 0 2 x
/ >> sin(sym(x)) =-%-- 6/18/2011 4:21
Current i~ele

ans = i-a = 10
folder a0
[0, 2~(1/2) /2, 3~(1/2)/2, 1, 0] b = [10 20 30]
x = [0, pi/4, pi
>> whos sin(sym(x))
Name Size Bytes Class Attributes : whos
octaves.m (MATLAB Script bl a 1x1 8 double \
- musical scales on standard 88-key piano ans ix5 60 sym ~——

view details — > i 2 b command

about selected . e history
file

|~
~
v

" | % E:\440-127\f11) MATLAB 7.12.0... | [& Microsoft Poweer... : &7A LV [a23pM

2. MATLAB Editor

) MATLAB 7.12.0 (R2011a)
Fle Edit Text Go Cel Tools Debug Desktop Window Help

8 Mm99 e @ E | @ | curent Folder: | E:\440-127\f11\examples\octaves v &
. Shortcuts 2] How to Add 2] What's New
E Editor - octaves.m Bl Command Window » |
D@ sMRBIC | cD-Aesn R-E0RABE BE | stk sse v f \ HOB &0~ x
CBB| -[10 [+] #[L1 x|t |O, \

Al % octaves.m - musical scales on standard 88-key piano TD

2 % 440:127 - Fall 2011 - 5. J. Orfanidis 1T

s

4— clear all switch to

5

6 F mm————— plot frequencies versus key number -----=—=—==-=—=--- Command WlndOW

7

B:i— £0: = 27.5; % frequency of lowest 'A' key (in Hertz)

= k = (0:87); % key numbers - B8 keys

10 — oct = k/12; % octaves - keys spaced at 1/12 of an octave

AAll= £ = £f0 * 2 %oct; % key frequencies in Hertz, £f = £0 * 2.~(k/12) —

i2 $ £ =£f0 * 2 _~oct => oct = log2(£/£0)

13

14 — figure; plot(k,f); % plot £ vs. key - see improved plot below

15— print -depsc octavesl.eps % save in color eps file

16

7 B ka = 0:12:87; %'A' key numbers = [0, 12, 24, 36, 48, 60, 72, B4]

T octa = ka/l12; % octaves of 'A' frequencies

A8 = fa = f(ka+l); % 'A' key frequencies in Hz

20 % fa = [27.5, 55, 110, 220, 440, 880, 1760, 3520]

21

2o= figure; plot(k,f, ka,fa,'xroe") % plot £ and fa vs. keys

23

24 — x1im([0,87]); set(gca, 'xtick',K 0:12:87);

Ay ylim([0,4200]); set(gca, 'vtick' ,b0:440:4000);

26— title('frequencies on a piano keyboard');

27— xlabel (' {\itk}, piano key'):

28 — ylabel ('{\itf} (Hz)');

ZE= legend(' all B8 keys', ' "'A'' keys only', 'location’', 'northwest');

I i grid on;

Sl print -depsc octaves2.eps

32

B0 figure; plot(k,oct, ka,octa,’'ro'); % plot cctaves vs. keys

34 i
S Sant . [ln1 cd 1 [ovr

is start 1B EA " | B E:\40-12711 [E] Microsoft Power... -) MATLAB 7.12.0...

Several ways of getting help:

2)

>>
>>
>>
>>
>>
>>
>>
>>
>>

help browser window

from the following commands:

helpdesk

help topic

doc topic

help

help dir

help syntax
help /
docsearch text
lookfor topic

%
%
%
%
%
%
%
%
%

3. Getting Help

1) help menu item on MATLAB desktop opens up searchable

comments begin with %

open help browser

e.g., help loglO

e.g., doc plot

get list of
get help on
get help on
operators &
search HTML

e.g.,

all help topics
entire directory
MATLAB syntax
special characters

browser for “text’

lookfor acos

>>
>>
>>
>>

>>
>>

4. Variables, Constants, Keywords

Variables require no special declarations of type or

storage. Examples:

3-

% simple scalar

X = 3;

y = [4, 5, 6]; % row vector of length 3

z = [4; 5; 6]; % column vector of length 3
A=1]1,2,3; 4,5,6]; % 2x3 matrix

s = 'abcd efqg'; % string

s = {'abc', 'defg', '123-456'}; % cell array

1 2 3

y =[4,5,6], z= , fﬁ-—lll - 6]

math notation

o 01 b

N

[4. 5, 6]

[4; 5; 6]

[1 2 3; 45 6]

2 3
S 6

% note,

Z =Y

What are your variables? How to clear them?
Use workspace window, or the commands:

who, whos, clear, clc, close

>> who
Your variables are:
Ay z
>> whos
Name Size Bytes Class Attributes
A 2x3 48 double
Yy 1x3 24 double
V4 3x1 24 double
>> clear all % clear all variables from memory
>> clc % clear command window

>> close all % close all open figures

Operating system commands:

>>
>>
>>

>>
>>

>>

>>

>>

>>

>>
>>

path
pathtool
addpath dir

cd dir

pwd

dir

what

which file

edit file

quit
exit

%
%
%

%
%

%

%

%

%
%

display search path
modify search path
add directory to path

change directory
print working directory

list all files 1In current dir
list MATLAB files only
display location of file

invoke MATLAB editor

quit MATLAB
quit MATLAB

Special built-in math constants that should not
(though they can) be re-defined as variables:

eps
i.]
Inf, Inf
Intmax
Intmin
NaN, nan
pi
realmax
realmin

%
%
%
%
%
%
%
%
%

machine epsilon - floating-point accuracy
imaginary unit, 1.e., sqrt(-1)

infinity

largest value of specified iInteger type
smallest value of specified integer type
not-a-number, e.g., 0/0, inf/inf

pi

largest positive floating-point number
smallest positive floating-point number

Note: 1, J are commonly used for array and matrix indices. If you're
dealing with complex-valued data, avoid redefining both 1, J.

Values of special constants:

>> eps
ans =
2.2204e-016

>> ntmax
ans =
2147483647

>> pntmin
ans =
-2147483648

>> realmax
ans =
1.7977e+308

>> realmin
ans =
2.2251e-308

% equal to 2"(-52)
% MATLAB’s floating-point accuracy

% 1.e., 2.2204 * 10™M(-16)
% 2°(31)-1 for 32-bit iIntegers

% equal to -27~(31)

% equal to (2-eps)*27°(1023)

% i.e., 1.7977 * 107°(308)

% 27(-1022) = 2.2251 * 107~(-308)

Special keywords that cannot be used
as variable names:

>> 1skeyword

ans =
“break” "function®
“case” "global "
"catch” “if"
"classdef” "otherwise"
"continue” "parfor"
"else” "persistent”
“elseirf” "return”
“end’ "switch"
“for* "try"

"while*

"true® , 'false

5. Numbers and Formats

MATLAB by default uses double-precision (64-bit)
floating-point numbers following the IEEE floating-point
standard. You may find more information on this

standard In:

Representation of Floating-Point Numbers

C. Moler, "Floating Points," MATLAB News and Notes,

Fall, 1996 (PDEF file)

X = (-1)s * (1+f) * 2°(e-1023)

NN A

1bit 52bits 11 bits
sigh mantissa exponent

1 <=e<=2046, e=0, e=2047

O0<=f<1
f min = eps = 27(-52)

T

machine epsilon

http://www.mathworks.com/support/tech-notes/1100/1108.html
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

MATLAB can also use single-precision (32-bit) floating
point numbers if so desired.

There are also several integer data types that are useful
In certain applications, such as image processing or
programming DSP chips. The integer data types have
8, 16, 32, or 64 bits and are signed or unsigned:

INt8, 1ntle, 1nt32, 1nt64
ulnt8, uintlé, uint32, uint64
For more information do:

>> help datatypes
>> help class % determine datatype

Complex Numbers

By default, MATLAB treats all numbers and expressions as
complex (even if they are real).

No special declarations are needed to handle complex-number
operations. Examples:

>>
>>
>>
>>
>>
>>
>>

Z

= 3+41;

= real(2);

= 1mag(z);

= abs(z);

theta = angle(2);
w = conj(2);
isreal (2);

AV X N

=z+jy=Re",
/ /

% or, 3+4), 3+4*1, 3+4*]

% real part of z

% 1naginary part of z

% absolute value of z

% phase angle of z In radians
% complex conjugate, w=3-41

% test 1T z 1s real or complex

R=|z| = /2% + 92, 0 = arctan 2

/‘ x

cartesian & polar forms

math notation: 6 = Arg(z)

equivalent definitions:

>> 7z = 3+4) <
Z =) 3+4*j
3.0000 + 4.0000i 3+4§
3+4*1
;>_X = real(2) complex(3,4)
3
>> y = 1mag(z)
y —
4
>> R = abs(z)
R =
5
>> theta = angle(z) % 1n radians
theta =
0.9273

>> abs(z - R*exp(J*theta)) + abs(z-x-j*y)
ans =
6.2804e-016

% test

Display Formats

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

>>

format
format
format
format
format
format
format
format
format
format
format
format
format

short
long
short e
short ¢
long e
long ¢
shorteng
longeng
hex

rat
compact
loose

vpa(x,digits)

%
%
%
%
%
%
%
%
%
%
%
%
%

%

default - 4 decimal places
same as the default

15 decimal places

4 decimal — exponential format
4 decimals — exponential or fixed
15 decimals - exponential
exponential or fixed

4 decimals, engineering

15 decimals, engineering
hexadecimal

rational approximation
conserve vertical spacing
default vertical spacing

variable-precision-arithmetic

These affect only the display format — internally all
computations are done with full (double) precision

Example - displayed value of 10*p1 in different formats:

31.4159 % format, or format short
31.415926535897931 % format long

3.1416e+001 % format short e

31.416 % format short g
3.141592653589793e+001 % format long e
31.4159265358979 % format long ¢
31.4159e+000 % format shorteng
31.4159265358979e+000 % format longeng

>> vpa(l0*pi) % symbolic toolbox

ans =

31.415926535897932384626433832795

>> vpa(10*p1,20) % specifty number of digits
ans =
31.415926535897932385

>> help format
>> help vpa
>> help digits

iInput/output functions: disp, 1nput

>> x = 10; disp("the value of x 1s:7); disp(X);
the value of x 1s:

10
>> X = 1Input("enter x: %) % numerical iInput
enter x: 100 ‘\\ % 100 entered by user
X =
100 prompt string in single quotes

>> y = Input(“enter string: ", "s"); % string input
enter string: abcd efg —
>> y = 1hput(“enter string: ")

enter string: “abcd efg” string entered with no quotes
y = T string entered in quotes

abcd efg

>> help disp

>> help fprintf >> help 1nput
>> help sprintf >> help menu

6. Arrays and Matrices

arrays and matrices are the most
Important data objects in MATLAB

We discuss briefly:

a)
b)
c)
d)
e)
f)
0)

row and column vectors
transposition operator, '

colon operator, :

equally-spaced elements, linspace
accessing array elements
dynamic allocation & de-allocation
pre-allocation

vectorize, vectorize, vectorize

The key to efficient MATLAB programming
can be summarized in three words:

and avoid all loops

Compare the two alternative computations:

X:
y:
for

end

[2.-3,4,1,5,8];
zeros(size(x));
1:length(x)

n =

y(n)

X(N)N2;

X
y

[2’_314,1’5,8];
X.N2;

!

AN

N

element-wise exponentiation .

ordinary exponentiation

N\

answer: y = [4,9,16,1,25,64]

> x =[O 12 3 4 5] % row vector

0] 1 2 3 4)
>> X = 0:5 % row vector
X =
0] 1 2 3 4)
> x = [01 2 3 4 5] % column vector, (0:5)'
X = \
0
1 the prime operator, ', or transpose, turns row
2 vectors into column vectors, and vice versa
3
4 caveat: ' is actually conjugate transpose,
5 use dot-prime, .', for transpose w/o conjugation

>> z = [1; 1+21;

Z =

>2>
ans

>>
ans

>>
ans

0O +
1.0000 +
1.0000 -

Z_.

(z.7)°

1.0000 -
1.0000 +

=

-00001
-00001
-00001

-00001

-00001

-00001
-00001
-00001

1-1] % column vector

% transpose without conjugation

1.0000 + 2.00001 1.0000 - 1.00001

% transpose with conjugation

1.0000 - 2.00001 1.0000 + 1.00001

% same as (z")." , or, conj(2)

about linspace:

x = linspace(a,b,N+1);
IS equivalent to:

x = a : (b-a)/N : b;

l.e., N+1 equally-spaced points in the interval [a,b]
or, dividing [a,b] into N equal sub-intervals

b—a
X(n):¢q4() (n—-1), n=1,2,...,N+1
N
> x =0 : 0.2 -1 % 1n general, x =
>> x = linspace(0,1,6) % see also logspac
X =

0O 0.2000 0.4000 0.6000 0.8000 1.0000
_— f

6 points, 5 subintervals

step
iIncrement

a-s:b
e

step increment

the number of subintervals
within [a,b] is obtained by
rounding (b-a)/s, down
to the nearest integer,

N = Floor((b-a)/s);
length(x) is equal to N+1

x(n) = a + s*(n-1),
n=1,2,...,N+1

% before rounding, (b-a)/s was In the three cases:

% 1/0.3 = 3.3333,

1/0.4 = 2.5,

1/0.7 = 1.4286

Note: MATLAB array indices always start with 1

and may not be 0 or negative

exception:
logical indexing,

’ -6, 10, 3, 4 13 discussed later

2, 5
1 1 1 I 1
x(1), x(2), x(3), x(4), x(5), x(6)

Other languages, such as C/C++ and Fortran, allow
Indices to start at 0. For example, the same array
would be declared/defined in C as follows:

double x[6] = { 5, -6, 10, 3, 4 };

2,
I I SR S
[01. x[1]., x[2], x[3]., x[4], x[5]

X

rule of thumb: M=C+ 1

accessing array entries:

>> x = [2, 5, -6, 10, 3, 4]

X =

2
>> length(x)
ans =

6
>> x(1)
ans =

2
>> X(3)
ans =

-6
>> x(end)
ans =

4

-6 10 3 4

% length of x, see also size(X)

% First entry

% third entry

% last entry — need not know length

accessing array entries:

>> x(end-3:end)

ans =
-6 10
>> x(3:5)
ans =
-6 10

>> x(1:3:end)
ans =
2 10

>> x(1:2:end)
ans =
2 -6

% x = [2, 5, -6, 10, 3, 4]

4 % last four

% list third-to-fifth entries

% every third entry

% every second entry

accessing array entries:

>> x = [2, 5, -6, 10, 3, 4];

>> x(end:-1:1) % list backwards, same as fliplr(x)
ans =
4 3 10 -6 5 2

>> x([3,1,5]) % list [x(3),x(1),x(5)]
ans =
-6 2 3

>> x(end+3) = 8
X =
2 5 -6 10 3 4 0 0 8

automatic memory re-allocation

automatic memory allocation and de-allocation:

>> clear X

>> xX(3) = -6
X =
0 0 -6
>> x(6) = 4
X =
0 0 -6 0 0 4
>> x(end) = [] % delete last entry
X =
0 0 -6 0 0
>> x = [2, 5, -6, 10, 3, 4];
>> x(3)=[1] % delete third entry
X =

2 S 10 3 4.

pre-allocation

>> clear Xx
>> X = zeros(1,6) % 1x6 array of zeros
X =

0 0 0 0 0 0

>> X = zeros(6,1) % 6x1 array of zeros
X =

Pre-allocation is useful for very large arrays, e.g.,
length > 1074, for example, in dealing with
audio or image files, or finite-element methods.

0
0
o)
0
0
0

See, for example, the program echoes.m, which
reads an audio file and adds reverberation effects
to it, as described in echoes.pdf, and discussed
also in week-2 lectures.

>> help zeros
>> help ones

illustrating dynamic allocation & pre-allocation

clear x;
for k=[3,7,10]

% k runs successively through

x(k) = 3 + 0.1*k; % the values of [3,7,10]

disp(X); % diplay current vector X
end

0.0 0.0 3.3

0.0 0.0 3.3 0.0 0.0 0.0 3.7

0.0 0.0 3.3 0.0 0.0 0.0 3.7 0.0 0.0 4.0

X = zeros(1,10);

for k=[3,7,10]

x(k) = 3 + 0.1*k;

disp(X);
end

% pre-allocate x to length 10

o OO
o OO
o OO
o OO

W ww
W ww

o OO
o OO

eNeoNe
O oo
cNeoNe
eNeoNe
W wo
N~ O
eNeoNe
O oo
cNeoNe
eNeoNe
»NOO
eNeoNe

Example: Octave Frequency Scales

Tasks:

calculate and plot the 88 frequencies of a standard 88-key piano
keyboard

iIntroduce the concept of octave frequency scales

generate and print the major notes (do, re, mi, fa, sol, la, si, do) of
the middle (4th) octave, and play them forward & backward on the
PC’s soundcard (need earphones in the DSV lab)

Complete MATLAB program is in the M-file, octaves.m.
Please, see also the handout, octaves.pdf, for more details.

standard 88-key piano keyboard

DR | NN FEOR O SO SR,

!

A0 Al A2 A3 C A4 A5 AB A7
275Hz 55Hz 110Hz 220Hz 440Hz 880Hz 1760Hz 3520 Hz
20 o1 22 23 24 2° 26 X

octaves = |Og2 (f];) = f= fO _ 2octaves

generate tone and

y(t) — sin(2 Rf'[) — | send it to MATLAB'’s

sound() function

Running the program, octaves.m, in command window:
>> octaves,; % run the program
>> close all; % close figure windows

>> publish("octaves®, "html®); % export to HTML

|

publishing your programs to HTML is a good way to print and submit
your homework problems. However, you must re-save it as a single file
web archive (i.e., MHT file) that incorporates all the generated graphs
(for Firefox you must install the Mozilla-Archive-Format add-on).

Alternatively, you can use any word processor and insert into it your
MATLAB code and your graphs in WMF or EPS formats (this allows
you to submit a single file, and preferably convert it into a PDF)

https://addons.mozilla.org/en-US/firefox/addon/mozilla-archive-format/

LY Lt key, k=87

]F1%2%3%4%5%6%7%]

!

A0 Al A2 A3 C A4 A5 AB A7
27.5 Hz 55 Hz 110 Hz 220 Hz 440 Hz 880 Hz 1760 Hz 3520 Hz
20 o1 22 23 24 25 26 27

octaves = log, (f];) = f=f, 200

keys, k=1[0,1,2, ...,87]| | FO = 27.5; MATLAB code

k = 0-87- from file
- octaves.m

f =10 * 2.~k/12);

figure; plot(k,T);

keys are separated by
1/12 of an octave

5000

4000/

3000

2000/

1000¢

plain vanilla plot with system default
choices for axes limits, tick marks,
and no labels

20 40 60 30

100

frequencies on a piano keyboard

3960 all 8 keys «

3020 O A keys only

0 12 24 36 48 60 72 84
k, piano key

ka = 0:12:87; —— __ red color, open circles

fa = f(ka+l); v

figure; plot(k,f, ka,fa,"ro"); <_P|°tfaVS- ka,
l.e., ‘A’ keys

% ka = [0, 12, 24, 36, 48, 60, 72, 84]

% fa = [27.5, 55, 110, 220, 440, 880, 1760, 3520]}

Next, we add commands to annotate the graph
with axis labels, axis limits, tick marks, grid, title,
and legends

>> help plot

note: we defined fa as a subset of T,
but we could have defined it directly as,

fa = f0 * 2.~ (ka/12):

ka = 0:12:87; —— __ red color, open circles

fa = f(ka+l); :

figure; plot(k,f, ka,fa,"ro"); | . |plotfavs. ka,
l.e., ‘A’ keys

% ka = [0, 12, 24, 36, 48, 60, 72, 84]

% fa [27.5, 55, 110, 220, 440, 880, 1760, 3520]

x1im(J0,87]); set(gca, "xtick", 0:12:87); set axis limits

«—

ylim([0,4200]); set(gca, "ytick®, 0:440:4000); and tick marks

title("frequencies on a prano keyboard®");
xlabel ("{\1tk}, prano key");
ylabel("{\i1tf} (Hz)");

legend(®™ all 88 keys®", " ""A"" keys only®", "location®, "nw");
grid on;

print —depsc octave2.eps % save plot in color EPS file
print —dmeta octave2.wmf % save plot in windows metafile

note: we defined fa as a subset of T,
but we could have defined it directly as,

fa = f0 * 2.~ (ka/12):

F— 3d octave - 4th octave

D# F# G# A# F# G# A#
Db Eb Gb Ab Bb Db Eb Gb Ab Bb

AL

A3 A4
middle C is 3/12 of an [Z-\RuVAN 440 Hz
octave above A3, or, middle C
9/12 octaves below A4 261.63 Hz

261.63 = 220 - 2312 = g40. 2792

4 octave keys, k=0:12, MATLAB index = k+1 =1:13
major keys are a subset of kK, m=[0, 2,4,5,7,9, 11, 12]

calculate frequencies in 4™ octave

o

% fc = 440 * 2~(-9/12);

Next, for each f of the major keys, y(t)

we generate a tone of half-second

duration & play it on the PC’s sound IHH
I

»h alternative calculation

fc = 220 * 2~(3/12); % middle C frequency
k = 0:12; % keys in 4t octave only
f =fc * 2.Mk/12); % frequencies of 4th octave

card (at the card’s default sampling
rate, fs = 8192 samples/sec):

y(t) =sin(2mtft), 0<t<0.5sec

t
0.5
SecC

time samples are spaced at the default

le., t=0:T:0.5

sampling interval T = 1/fs = 0.122 msec

generate & play major notes in 4" octave

fs = 8192; T = 1/fs; % default sampling rate
Tmax = 0.5; % half-second duration for notes
t = 0:T:Tmax; % length(t) = 4097 points

% steps of T = 1/fs = 0.1221 msec

m=[02457 9 11 12]; % major keys in 4th octave
% CDEFGABC = do re mi fa sol la si do

for 1=m+1, % m+l = [1 3 56 8 10 12 13]
y = sin(2*pi1*f(1)*t); % y has half-second duration
sound(y,fs); % play y at rate fs
end
pause; % pause until a key 1Is depressed
for 1=fliplr(m+l), % Fliplr(m+1)=[13 12 10 8 6 5 3 1]
y = sin(2*pi1*f(1)*t);
sound(y,fs); % play them In reverse order

end

formatted printing of frequencies and key names

k oct=k/12 f=fc*2"(k/12) keys

0 0.0000 261.63 C do
1 0.0833 277.18 C#
2 0.1667 293 .66 D re
3 0.2500 311.13 D#
4 0.3333 329.63 E mi
S 0.4167 349.23 F fa
6 0.5000 369.99 F#
7 0.5833 392.00 G sol
8 0.6667 415.30 G#
9 0.7500 440.00 A la
10 0.8333 466.16 A#
11 0.9167 493 .88 B si
12 1.0000 523.25 C_ do

\'\

cell arrays

% formatted printing of frequencies and key names
% define cell arrays of key names to facilitate printing

keyS — {ICI, IC#I’ IDI, ID#I’ IEI’ IFI’ IF#I’ IGI’ IG#I,---
"AT, "A#", "BT, "C"};

empty string
v
doremis = {"do", """, "re", """, mi*, "fa*, """, "sol",...
==, "la*, "%, "si", "do"};

] cell arrays use {...}

fprintf(°"\n");
fprintf (" kK oct=k/12 f=fc*2™(k/12) keys\n*®);
fprintf (" —————— - \n");
for 1=k+1,
fprintf("%2d %1.4F %3.2F %s %s\n", ...
1-1, k(1)/712, (1), keys{i}, doremi{i});
end f f /

I-th entry of cell arrays ellipsis

continues to
next line

>> help fprintf % formatted printing

>> doc fprintf

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani
	Example: Octave Frequency Scales

