
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 2

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output formatting – fprintf, sprintf (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

1. MATLAB desktop
2. MATLAB editor
3. Getting help
4. Variables, built-in constants, keywords
5. Numbers and formats
6. Arrays and matrices
7. Operators and expressions
8. Functions
9. Basic plotting
10. Function maxima and minima
11. Relational and logical operators
12. Program flow control
13. Matrix algebra and linear equations

MATLAB Basics

These should be enough to get you started. We will explore
them further, as well as other topics, in the rest of the course.

week 1

week 2

6. Arrays and Matrices

arrays and matrices are the most
important data objects in MATLAB

Last week we discussed one-dimensional arrays,
i.e., column or row vectors.

Next, we discuss matrices, which are two-dimensional
arrays. We will explore them further in Chapters 4 & 9.

>> A = [1 2 3; 2 0 4; 0 8 5]
A =

1 2 3
2 0 4
0 8 5

>> size(A) % [N,M] = size(A), NxM matrix
ans =

3 3

matrix indexing
convention

accessing matrix elements:

>> A(1,1) % 11 matrix element
ans =

1

>> A(2,3) % 23 matrix element
ans =

4

>> A(:,2) % second column
ans =

2
0
8

>> A(3,:) % third row
ans =

0 8 5

>> A = [1 2 3 4; 2 0 5 6; 0 8 7 9] % size 3x4
A =

1 2 3 4
2 0 5 6
0 8 7 9

>> A' % size 4x3
ans =

1 2 0
2 0 8
3 5 7
4 6 9

transposing a matrix:
rows become columns and vice versa

=>

transposition operation

>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.
zeros - Zeros array.
ones - Ones array.
eye - Identity matrix.
repmat - Replicate and tile array.
linspace - Linearly spaced vector.
logspace - Logarithmically spaced vector.

etc.

For more information on elementary matrices see:

7. Operators and Expressions

operation element-wise matrix-wise

addition + +
subtraction - -
multiplication .* *
division ./ /
left division .\ \
exponentiation .^ ^

transpose w/o complex conjugation .'
transpose with complex conjugation '

>> help /
>> help precedence

>> a = [1 2 5];
>> b = [4 -5 1];

>> a+b
ans =

5 -3 6

>> a.*b
ans =

4 -10 5

>> a./b
ans =

0.2500 -0.4000 5.0000

>> a.\b
ans =

4.0000 -2.5000 0.2000

% note: (a./b).*(a.\b) = [1,1,1]

>> a = [2 3 4 5];

>> a.^2 % [2^2, 3^2, 4^2, 5^2]
ans =

4 9 16 25

>> 2.^a % [2^2, 2^3, 2^4, 2^5]
ans =

4 8 16 32

>> a+10
ans =

12 13 14 15

>> A = [1 2; 3 4]
A =

1 2
3 4

>> [A, A.^2; A^2, A*A] % form sub-blocks
ans =

1 2 1 4
3 4 9 16
7 10 7 10 % note A^2 = A*A

15 22 15 22

>> B = 10.^A;
>> [B, log10(B)]
ans =

10 100 1 2
1000 10000 3 4

8. Functions

>> help elfun % elementary functions list

Some typical built-in elementary functions are:

sin(x), cos(x), tan(x), cot(x)
asin(x), acos(x), atan(x), acot(x)

sinh(x), cosh(x), tanh(x), coth(x)
asinh(x), acosh(x), atanh(x), acoth(x)

exp(x), log(x), log10(x), log2(x)

fix(x), floor(x), ceil(x), round(x)

sqrt(x), sign(x), abs(x)

sum(x), prod(x), cumsum(x), cumprod(x)

Some more functions:

size(x), length(x), class(x)

sinc(x) % sin(pi*x)/(pi*x)

max(x), min(x), sort(x)

mean(x), std(x), % statistics
median(x), mode(x)

rand, randn, % random number generators
randi, rng % initialize with rng

filter, conv, fft % DSP functions

clock, date

factorial(n), nchoose(n,k) % discrete math

for a complete list, see Appendix A of your text

>> x = [0, pi/4, pi/3, pi/2, pi];

>> sin(x)
ans =

0 0.7071 0.8660 1.0000 0.0000

>> sin(sym(x)) % use symbolic toolbox
% to see exact expressions

ans =
[0, 2^(1/2)/2, 3^(1/2)/2, 1, 0]

Most functions admit scalar or array and matrix input
arguments and operate on each element of the array

>> x = [2.1, 2.8, -3.1, -3.5, 4.5];

>> y = exp(x)
y =

8.1662 16.4446 0.0450 0.0302 90.0171

>> z = log(y) % note log(exp(x)) = x
z =

2.1000 2.8000 -3.1000 -3.5000 4.5000

>> [fix(x); floor(x); ceil(x); round(x)]
ans =

2 2 -3 -3 4
2 2 -4 -4 4
3 3 -3 -3 5
2 3 -3 -4 5

>> format long;
>> N = 8; n = 1:N; % n = [1, 2, ..., 8]

% [1/2^1, 1/2^2, ..., 1/2^8]
>> sum(1./2.^n) % note the operations ./ and .^
>> 1 - 2^(-N)
ans =

0.996093750000000
ans =

0.996093750000000

Example: verify the following geometric-series identity
using the function sum(x),

summation
notation

y = cumsum(x) – cumulative sum of the elements of x

cumsum example:

>> N = 8; n = 1:N; % n is a row vector

>> y = cumsum(1./2.^n); % y,z should be equal
>> z = 1 - 1./2.^n;

>> fprintf('%d %1.8f %1.8f\n',[n; y; z]);

1 0.50000000 0.50000000
2 0.75000000 0.75000000
3 0.87500000 0.87500000
4 0.93750000 0.93750000
5 0.96875000 0.96875000
6 0.98437500 0.98437500
7 0.99218750 0.99218750
8 0.99609375 0.99609375

fprintf operates
column-wise on the 3x8
matrix [n; y; z], i.e.,

>> seed = 127; rng(seed);
>> x = randn(5,3)
x =

0.0294 -1.0928 1.6686
-1.5732 -0.1697 -0.4750
-1.1899 0.5751 -0.7604
1.8115 0.6548 -1.1189
0.0426 -0.0969 0.1698

>> min(x), max(x), mean(x), std(x)
ans =

-1.5732 -1.0928 -1.1189
ans =

1.8115 0.6548 1.6686
ans =

-0.1759 -0.0259 -0.1032
ans =

1.3248 0.7051 1.0972

initialize generator,
5x3 matrix of zero-mean,
unit-variance, gaussian,
random numbers

computed column-wise

>> help rng
>> help rand
>> help randn
>> help randi

MATLAB is
column-dominant

x =
0.0294 -1.0928 1.6686
-1.5732 -0.1697 -0.4750
-1.1899 0.5751 -0.7604
1.8115 0.6548 -1.1189
0.0426 -0.0969 0.1698

>> [m,i] = min(x), min(min(x))
m =

-1.5732 -1.0928 -1.1189
i =

2 1 4
ans =

-1.5732

>> sort(x)
ans =

-1.5732 -1.0928 -1.1189
-1.1899 -0.1697 -0.7604
0.0294 -0.0969 -0.4750
0.0426 0.5751 0.1698
1.8115 0.6548 1.6686

minimum of each column,
index within each column,
overall minimum

sort each column in
ascending order

sort(x,'ascend')
sort(x,'descend')

min,max,sort
act column-wise
on matrix inputsi=2

Make up your own functions using three methods:

1. function-handle, @(x)
2. inline
3. M-file

>> f = @(x) exp(-0.5*x).*sin(5*x);

>> g = inline('exp(-0.5*x).*sin(5*x)');

% edit & save file h.m containing the lines:
function y = h(x)
y = exp(-0.5*x).*sin(5*x);

.* allows vector or matrix inputs x

example:

How to include parameters in functions

% method 1: define a,b first, then define f

a = 0.5; b = 5;
f = @(x) exp(-a*x).*sin(b*x);

% method 2: pass parameters as arguments to f

f = @(x,a,b) exp(-a*x).*sin(b*x);

% this defines the function f(x,a,b)
% so that f(x, 0.5, 5) would be equivalent to
% the f(x) defined in method 1.

example:

9. Basic Plotting

MATLAB has extensive facilities for the plotting of
curves and surfaces, and visualization. We will be
discussing these in detail later on.

Basic 2D plots of functions and (x,y) pairs can be
done with the functions:

plot, fplot, ezplot

>> help plot % 2-D plotting
>> help fplot % function plotting
>> help ezplot % easy function plotting

>> f = @(x) exp(-0.5*x).*sin(5*x);
>> fplot(f,[0,5]); % plot over interval [0,5]

If a function f(x) has already been defined by a function-
handle or inline, it can be plotted quickly with fplot,
ezplot, which are very similar. One only needs to
specify the plot range. For example:

A figure window opens up,
allowing further editing of the
graph, e.g., adding x,y axis
labels, titles, grid, changing
colors, and saving the graph
is some format, such as
WMF, PNG, or EPS.

0 1 2 3 4 5
-1

-0.5

0

0.5

1

x

y

>> x = linspace(0,5,101);
>> y = f(x);
>> plot(x,y,'b-'); % blue-solid line
>> xlabel('x'); ylabel('y'); grid;
>> title('f(x) = e^{-0.5x} sin(5x)');

0 1 2 3 4 5
-1

-0.5

0

0.5

1

x

y

y = f(x) = e -0.5x sin(5x)

using the plot function

plot annotation can be done
by separate commands, as
shown above, or from the plot
editor in the figure window.

>> x5 = x(1:5:end); % plot every 5th data point
>> y5 = y(1:5:end);
>> plot(x,y,'b-', x5,y5, 'r.'); % blue-line, red dots
>> xlabel('x'); ylabel('y'); grid;
>> title('f(x) = e^{-0.5x} sin(5x)');

multiple graphs on same plot

0 1 2 3 4 5
-1

-0.5

0

0.5

1

x

y

y = f(x) = e -0.5x sin(5x)

(x,y) plotted as blue-solid line

(x5,y5) pairs plotted as red dots

multiple (x,y) pairs---not
necessarily of the same
size---can be plotted with
different line styles.

>> e = exp(-0.5*x); % envelope of f(x)
>> plot(x,y,'b-', x,e,'r--', x,-e,'m--');
>> xlabel('x'); ylabel('y'); grid;
>> title('f(x) = e^{-0.5x} sin(5x)');
>> legend('e^{-0.5x} sin(5x)', 'e^{-0.5x}', ...

'-e^{-0.5x}', 'location','SE');

plotting multiple curves
and adding legends

0 1 2 3 4 5
-1

-0.5

0

0.5

1

x

y

y = f(x) = e -0.5x sin(5x)

 e-0.5x sin(5x)

 e-0.5x

 -e-0.5x

ellipsis
continues to
next line

south-east

legends can also be
inserted with plot editor

Suppose a function f(x) has a minimum (or maximum) within an
interval [a,b], or, a ≤ x ≤ b. The following three methods can
be used to find it:

1. Graphical method using the function min (or max)
2. Using the built-in function fminbnd
3. Using the function fzero, (requires the derivative of f(x))

10. Function Maxima and Minima

Engineers always like to optimize their designs by finding
the best possible solutions. This usually amounts to
minimizing or maximizing some function of the design
parameters.

(use fminsearch for multivariable functions)

f = @(x) ... % define your function here
% f(x) must admit vector inputs
% and return vector outputs

x = linspace(a,b,N); % larger N works better
[fmin,imin] = min(f(x)); % imin = index at min
xmin = x(imin); % where the minimum is
plot(x,f(x), xmin,fmin,'o'); % display it

[xmin,fmin] = fminbnd(f,a,b); % search in [a,b]

F = @(x) ... % define derivative of f(x)
% or use symbolic toolbox

xmin = fzero(F,x0); % search near x0
fmin = f(xmin); % minimum value of f(x)

1.

2.

3.

MATLAB implementation of the three methods

Example: finding
the minimum of a
curve using the
function min

f0 is minimum of
the array y=f(x)

i0 is the index of
array at its min,
i.e., f0=y(i0)

x0 is value of x at
the minimum of y

exact values are:

x0 = 1
f0 = -3

f = @(x) x.^4 - 4*x;

x = linspace(0, 1.5, 150);

[f0,i0] = min(f(x)); x0 = x(i0);

plot(x,f(x),'b-', x0,f0,'ro');
xlabel('x'); grid;
legend('f(x)=x^4-4x', '(x0,f0)');

0 0.5 1 1.5
-4

-3

-2

-1

0

x

 f(x) = x4 - 4x
 (x0, f0)

finding the minimum of f(x) using
the function fminbnd

f = @(x) x.^4 – 4*x; % find minimum of f(x)
[x1,f1] = fminbnd(f,0,1.5); % in the interval[0,1.5]

both fminbnd and
fzero admit function
handles as inputs

finding the minimum of f(x) using the function
fzero, requires derivative F(x) = df(x)/dx

F = @(x) 4*x.^3 – 4; % derivative of f(x)
x2 = fzero(F, 0.5); f2 = f(x2);

[x0,x1,x2; f0,f1,f2] % compare the three methods

ans =
0.9966 1.0000 1.0000

-2.9999 -3.0000 -3.0000

11. Relational and Logical Operators

>> doc is* % list of all ‘is’ functions
>> help logical % convert to logical
>> help true % logical 1
>> help false % logical 0
>> help relop % relational operators
>> help ops % same as help /
>> help find % indices of non-zero elements

Relational and logical functions

find, logical, true, false

ischar, isequal, isfinite, isinf, isinteger
islogical, isnan, isreal

>> help precedence

& logical AND
&& logical AND for scalars w/ short-circuiting
| logical OR
|| logical OR for scalars w/ short-circuiting
~ logical NOT
xor exclusive OR
any true if any elements are non-zero
all true if all elements are non-zero

Logical Operators

== equal
~= not equal
< less than
> greater than

<= less than or equal
>= greater than or equal

Relational Operators

>> a = [1 2 0 -3 7];
>> b = [3 2 4 -1 7];
>> a == b
ans =

0 1 0 0 1

>> a == -3
ans =

0 0 0 1 0

>> find(a==-3) % otherwise, it returns empty
ans =

4

>> find(a), find(a>=2), find(a<=0)
ans =

1 2 4 5
ans =

2 5
ans =

3 4

>> a = [1 2 0 -3 7];
>> b = [3 2 4 -1 7];

>> a>=2, b<=2
ans =

0 1 0 0 1
ans =

0 1 0 1 0

>> (a>=2) & (b<=2) % logical AND
ans =

0 1 0 0 0

>> (a>=2) | (b<=2) % logical OR
ans =

0 1 0 1 1

>> a = [1 3 4 -3 7];

>> k = (a>=2), m = find(a>=2)
k =

0 1 1 0 1
m =

2 3 5

>> a(m), a(k)
ans =

3 4 7
ans =

3 4 7

>> i = [0 1 1 0 1]
>> a(i)
??? Subscript indices must either be real positive
integers or logicals.

% but a(logical(i)) works

k is logical index, m is normal

class(i) is double, even though
i==k is true

class(k) is logical

logical indexing

more on
logical indexing

>> A = [3 4 nan; -5 inf 2]
A =

3 4 NaN
-5 Inf 2

>> k = isfinite(A)
k =

1 1 0
1 0 1

>> A(k) % listed column-wise
ans =

3
-5
4
2

>> A(~k)=0 % set non-finite entries to zero
A =

3 4 0
-5 0 2

>> find(k)
ans =

1
2
3
6

Program flow is controlled by the
following control structures:

1. for . . . end % loops
2. while . . . end

3. if . . . end % conditional
4. if . . . else . . .end
5. if . . . elseif . . . else . . . end
6. switch . . . case . . . otherwise. . .end

7. break, continue, return

12. Program Flow Control

for-loops and conditional ifs are by far the
most commonly used control stuctures

for variable = expression
statements ...

end

>> N=1000; S=0;
>> for n=1:N,

S = S + 1/n^2; % compute the sum:
end

>> S
S =

1.6439

>> n = 1:N; S = sum(1./n.^2) % vectorized version
S =

1.6439

for-loops

while condition
statements ...

end

>> N=1000; S=0; n=1;
>> while n<=N,

S = S + 1/n^2; % compute the sum:
n = n+1;

end

>> S
S =

1.6439

>> pi^2/6 % note the limiting sum,
ans = % first derived by Euler

1.6449

while-loops

if condition
statements ...

end

if condition
statements ...

else
statements ...

end

if condition
statements ...

elseif condition
statements ...

elseif condition
statements ...

else
statements ...

end

several elseif statements
may be present,

elseif does not need a matching end

three versions of conditional ifs

>> x = 1;
>> % x = 0/0;
>> % x = 1/0;

>> if isinf(x),
disp('x is infinite');

elseif isnan(x),
disp('x is not-a-number');

else
disp('x is finite number');

end

x is finite number
% x is not-a-number
% x is infinite

switch expression
case expression

statements ...
case expression

statements ...
otherwise

statements ...
end

x = [1, -4, 5, 3]; p = inf;
switch p

case 1
N = sum(abs(x)); % N = norm(x,1);

case 2
N = sqrt(sum(abs(x).^2)); % N = norm(x,2);

case inf
N = max(abs(x)); % N = norm(x,inf);

otherwise
N = sqrt(sum(abs(x).^2)); % N = norm(x,2);

end

equivalent calculation using
the built-in function norm :

this expression is evaluated first,
and if its value matches any of
these, then the corresponding
case-statements are executed

several case statements
may be present

L1, L2, and L∞ norms of a vector

>> help norm % vector and matrix norms

Example: Overlapping Echoes

• DSP application, implementing a Digital Audio Effect

• reads a wave file and plays a 20-second portion of it

• then, adds three overlapping, slightly delayed, copies of
itself and plays the result

• illustrates the use of for-loops, if-statements, and
pre-allocation to speed up processing

complete program, echoes.m, and supporting
wave files are in the zip file, echoes.zip.

block-diagram realization

x t()

x t()

t
0

y t()

y t x t ax t a x t a x t() = () + () + () + ()− − −D D D2 32 3

y t()

a x t2 ()−2D
ax t()−D

a x t3 ()−3D

x t() −3D

3D D 2D

 D

D

D

delay

shifted copies

x t() −2D

x t()−D
a

a3

a2

% echoes.m – listen to overlapping echoes

clear all;

[x,Fs] = wavread('dsummer.wav'); % read wave file and its Fs

N = min(round(20*Fs), length(x)); % play no more than 20 sec
x = x(1:N); % truncate x to length N

sound(x,Fs); % play x

T = 1/2; D = round(T*Fs); % echo delay in sec and in samples

Fs, N, D % here, Fs=44100, N=839242, D=22050

a = 0.5; % multiplier coefficient

y = zeros(size(x)); % pre-allocation speeds up processing

Note: the sampling rate Fs is the number of samples per second, thus,
N = 20*Fs = (20 sec)*(samples/sec) = number of samples in 20 sec

tic % tic-toc - measures execution time
for n=1:length(x), % construct overlapped signal y

if n<=D,
y(n) = x(n);

elseif n<=2*D,
y(n) = x(n) + a * x(n-D);

elseif n<=3*D,
y(n) = x(n) + a * x(n-D) + a^2 * x(n-2*D);

else,
y(n) = x(n) + a * x(n-D) + a^2 * x(n-2*D) +...

a^3 * x(n-3*D);
end

end
toc

pause; sound(y,Fs); % play y

%tic for n=1:length(x),if n<=D,y(n)=x(n);elseif n<=2*D,y(n)=...
%x(n)+a*x(n-D);elseif n<=3*D,y(n)=x(n)+a*x(n-D)+a^2*x(n-2*D);...
%else,y(n)=x(n)+a*x(n-D)+a^2*x(n-2*D)+a^3*x(n-3*D); end end...
%toc pause;sound(y,Fs);

proper indentation
improves readability,

try to read this

pre-allocation results

wave file Fs N with without

JB.wav 16000 71472 0.02 sec 34.44 sec
nodelay.wav 22050 266758 0.13 sec 702.33 sec
dsummer.wav 44100 839242 0.39 sec too long

13. Matrix Algebra

• dot product
• matrix-vector multiplication
• matrix-matrix multiplication
• matrix inverse
• solving linear systems

math
notations

MATLAB
notation

dot product

a, b must have the same
dimension

math
notations

MATLAB
notation

dot product
for complex-valued vectors

hermitian conjugate of a

for real-valued vectors, the
operations ' and .'
are equivalent

>> a = [1; 2; -3]; b = [4; -5; 2];
>> a'*b
ans =

-12
>> dot(a,b) % built-in function
ans =

-12

matrix-vector multiplication

combine three dot product
operations into a single
matrix-vector multiplication

matrix-matrix multiplication

combine three matrix-vector
multiplications into a single
matrix-matrix multiplication

>> A = [4 1 2; 1 -1 1; 2 1 1]
A =

4 1 2
1 -1 1
2 1 1

>> B = [5 -1 -3; -4 3 1; -7 2 6]
B =

5 -1 -3
-4 3 1
-7 2 6

>> C = A*B
C =

2 3 1
2 -2 2

-1 3 1

C(i,j) is the dot product of i-th row of A with j-th column of B

solving linear systems

always use the backslash operator to
solve a linear system, instead of inv(A)

solving linear systems (using backslash)

>> A = [4 1 2; 1 -1 1; 2 1 1];
>> b = [10 20 10]';
>> x = A\b
x =

-30
10
60

>> norm(A*x-b) % test - should be zero
ans =

0

solving linear systems (using inv)

>> A = [4 1 2; 1 -1 1; 2 1 1];
>> b = [10 20 10]';
>> inv(A) % same as A^(-1)
ans =

2 -1 -3
-1 0 2
-3 2 5

>> x = inv(A) * b % but prefer backslash
x =

-30
10
60

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani
	Example: Overlapping Echoes

