Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department
orfanidi@ece.rutgers.edu

week 2

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
— | Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)

Week 4 - Plotting — 2D and 3D plots (ch. 5)

Week 5 - User-defined functions (ch. 6)

Week 6 - Input-output formatting — fprintf, sprintf (ch. 7)

Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)

Week 9 - Structures & cell arrays (ch. 10)

Week 10 - Symbolic math (ch. 11)

Week 11 - Numerical methods — data fitting (ch. 12)

Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

MATLAB Basics

1. MATLAB desktop —

2. MATLAB editor

3. Getting help

4. Variables, built-in constants, keywords week 1
5. Numbers and formats

6. Arrays and matrices _

7. Operators and expressions —

8. Functions

9. Basic plotting

10. Function maxima and minima week 2
11. Relational and logical operators

12. Program flow control

13. Matrix algebra and linear equations |

These should be enough to get you started. We will explore
them further, as well as other topics, in the rest of the course.

6. Arrays and Matrices

arrays and matrices are the most
Important data objects in MATLAB

Last week we discussed one-dimensional arrays,
l.e., column or row vectors.

Next, we discuss matrices, which are two-dimensional
arrays. We will explore them further in Chapters 4 & 9.

— j-th column

A A Agg i . .
A=|A> A Aoy 3 matrix indexing
Aqr Aao Ane i-th row |- L T convention

31 32 433 iA(l,])

>>A=1[123;204; 08 5]

A =

1 2 3

2 0] 4

0 8)
>> si1ze(A) % [N,M] = size(A), NxM matrix
ans =

3 3

accessing matrix elements:

>> A(1,1)
ans =
1

>> A(2,3)
ans =
4

>> A(:,2)
ans =

2
0
8

>> A(3,:)
ans =

% 11 matrix element

% 23 matrix element

% second column

% third

S

row

A=

@D 2 3
2 0 4
0 8 5
(1 2 3]
2 0 @)
0 8 5
- .
y) 4
0 5.
(1 2 3]
2 0 4

transposing a matrix:
rows become columns and vice versa

> A =J1234; 2056; 08 7 9] % si1ze 3x4
A =

1 2 3 4

2 0 5 6

0 8 7 9
>> A" % si1ze 4x3
ans =

1 2 0

2 0 8

3 5 7

transposition operation

For more information on elementary matrices see:

>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.

Zeros - Zeros array.

ones - Ones array.

eye - ldentity matrix.

repmat - Replicate and tile array.

I Inspace - Linearly spaced vector.
logspace - Logarithmically spaced vector.

etc.

7. Operators and Expressions

operation element-wise matrix-wise

+
+

addition
subtraction

multiplication J* *
division 4 /
left division -\ \

N\ N\

exponentiation ;

transpose w/o complex conjugation .
transpose with complex conjugation

>> help /
>> help precedence

>> a = [1 2 5];
>> b [4 -5 1];

>> a+b
ans =

>> a.*b
ans =
4 -10 5

>> a./b
ans =
0.2500 -0.4000 5.0000

>> a._.\b
ans =
4 _.0000 -2 .5000 0.2000

% note: (a./b).*(a-\b) = [1,1,1]}

>> a = [2 3 4 5];

>> a."N2 % [272, 372, 472, 572]
ans =

4 9 16 25
>> 2.Ma % [272, 273, 274, 275]
ans =

4 8 16 32
>> a+10
ans =

12 13 14 15

>> A = [1 2; 3 4]
A =

1 2
3 4

>> [A, A."2: AN2, A*A]
ans =

>> B = 10.7A; B_
>> [B, logl0(B)] -
ans =
10 100
1000 10000

% form sub-blocks

% note AN2 = A*A

101 102
103 104

A~ N

1
3

>> help elfun % elementary functions list

Some typical built-in elementary functions are:

sin(x), cos(x), tan(x), cot(x)
asin(x), acos(x), atan(x), acot(x)

sinh(x), cosh(x), tanh(x), coth(x)
asinh(x), acosh(x), atanh(x), acoth(x)

exp(x), log(x), 10g1l0(x), log2(x)
fix(x), floor(x), ceill(x), round(x)
sgrt(x), sign(x), abs(x)

sum(x), prod(x), cumsum(x), cumprod(x)

Some more functions:

size(x), length(x), class(x)
sinc(x) % sin(pi*x)/(p1*x)
max(x), min(x), sort(x)

mean(x), std(x), % statistics
mediran(x), mode(X)

rand, randn, % random number generators
randi, rng % initialize with rng

filter, conv, fft % DSP functions
clock, date

factorial(n), nchoose(n,k) % discrete math

for a complete list, see Appendix A of your text

Most functions admit scalar or array and matrix input
arguments and operate on each element of the array

X = [X1, X2, X3, ...]

fx)=1[f(x1), f(x2), f(x3), ...]

>> x = [0, pi/4, pi/3, pi/2, pi];

>> sin(x)
ans =
0 0.7071 0.8660 1.0000 0.0000

>> sin(sym(x)) % use symbolic toolbox

% to see exact expressions
ans =
[O, 2~n(1/2)/2, 3~(1/2)/2, 1, 0]

>> x = [2.1, 2.8, -3.1, -3.5, 4.5];

>> y = exp(x)

y:
8.1662 16.4446 0.0450 0.0302 90.0171

>> 7z = log(y) % note log(exp(x)) = X
Z =
2.1000 2.8000 -3.1000 -3.5000 4 _5000

>> [Fix(X); Floor(x); ceirl(x); round(x)]
ans =

N WINDN
W WNDN
|
w b
I
w b
(G2 I 6 N SN SN

Example: verify the following geometric-series identity
using the function sum(x),

11 1 1,
20T T T TN T TN

summation 4 1 1

notation

2N

>>
>>

>>
>>

ans

ans

n=1

format long;
N =8; n= 1:N; % n=1[1, 2, ..., 8]

% [1/2~1, 1/2°2, ..., 1/278]
sum(l-/2-’\n)‘/ % note the operations ./ and .
1 - 2~(-N)

0.996093750000000

0.996093750000000

N\

y = cumsum(X) — cumulative sum of the elements of x

y(2) = x(1)+x(2)
X(1)+x(2)+x(3)

<

o~
Lo

~—
|

cumsum example:

>>

>>
>>

>> fprintf("%d

oO~NO U P WN PR

N

y
Z

CO0OO0O0O0O0O00O0O0O0o

8: n =

1:N;

= cumsum(1./72.7n);

-50000000
- 75000000
-87500000
-93750000
-96875000
-98437500
-99218750
-99609375

CO0OO0O0O0O0O0O00O0O0OO0

1 - 1./72."n;

%1.8F

-50000000
- 75000000
-87500000
-93750000
-96875000
-98437500
-99218750
-99609375

% n 1S a row vector

% y,z should be equal

%1.8F\n",[n; y; z]);

T

fprintf operates

column-wise on the 3x8
matrix [n; y; z], i.e.,

Initialize generator,

5x3 matrix of zero-mean,
unit-variance, gaussian,
random numbers

>> seed = 127; rng(seed); PR
>> X = randn(5,3) S —
X =
0.0294 -1.0928 1.6686
-1.5732 -0.1697 -0.4750
-1.1899 0.5751 -0.7604
1.8115 0.6548 -1.1189
0.0426 -0.0969 0.1698

>> min(x), max(x), mean(x), std(x)

ans =
-1.5732 -1.0928 -1.1189

ans =
1.8115 0.6548 1.6686

ans =
-0.1759 -0.0259 -0.1032

ans =
1.3248 0.7051 1.0972

computed column-wise

MATLAB is
column-dominant

0.0294
i:2//-1.1899
1.8115
0.0426
>> [m, 1] =
m:
~1.5732
I =
2
ans =
-1.5732

>> sort(x)
ans =
-1.5732
-1.1899
0.0294
0.0426
1.8115

-1.0928 1.6686
-0.1697 -0.4750
0.5751 -0.7604
0.6548 1!!@
-0.0969 01698

min(x), min(min(x))

min,max,sort

act column-wise
on matrix inputs

«

-1.0928 -1.1189

L

minimum of each column,
iIndex within each column,
overall minimum

4 ¢///////////////

sort each column in
ascending order

sort(x, "ascend")
sort(x, "descend")

—
-1.0928 -1.1189
-0.1697 -0.7604
-0.0969 -0.4750
0.5751 0.1698
0.6548 1.6686

Make up your own functions using three methods:

1. function-handle, @(x)
2. inline
3. M-file

example: f(x)= e Y>Xsin(5x)

>> F = @(X) exp(-0.5*x).*sin(6*x);
>> g = inline("exp(-0.5*x).*sin(5*x)");

% edit & save file h.m containing the lines:

function y = h(x)

y = exp(-0.5*x).*sin(6*x);
T

.* allows vector or matrix inputs x

How to include parameters in functions

example: f(x) = e~ %" sin(bx)

%
a
f
%

f

%
%
%

method 1: define a,b first, then define F

0.5; b = 5;
@(x) exp(-a*x).*sin(b*x);

method 2: pass parameters as arguments to T
= 0(x,a,b) exp(-a*x).*sin(b*x);

this defines the function f(x,a,b)
so that f(x, 0.5, 5) would be equivalent to
the T(x) defined 1n method 1.

9. Basic Plotting

MATLAB has extensive facilities for the plotting of
curves and surfaces, and visualization. We will be
discussing these in detall later on.

Basic 2D plots of functions and (X,y) pairs can be
done with the functions:

plot, Tfplot, ezplot

>> help plot % 2-D plotting

>> help fplot % function plotting
>> help ezplot % easy function plotting

If a function f(x) has already been defined by a function-
handle or inline, it can be plotted quickly with fplot,
ezplot, which are very similar. One only needs to

specify the plot range. For example:

>> F = Q(X) exp(-0.5*x) .*sin(6*x);
>> fplot(f,[0,5]); % plot over interval [0,5]

1

A figure window opens up,
allowing further editing of the
graph, e.g., adding X,y axis
labels, titles, grid, changing
colors, and saving the graph
IS some format, such as
WMF, PNG, or EPS.

using the plot function

>> x = linspace(0,5,101);
>>y = T(X);

>> plot(X,y, " "b-"); % blue-solid line
>> xlabel("x"); ylabel("y"); grid;

>> title(C"f(x) = e™M-0.5x} sin(5x)");

0.-5% oin(5x%)

y=1(x)=e"

plot annotation can be done
by separate commands, as

shown above, or from the plot
editor in the figure window.

multiple graphs on same plot

>> x5 = x(1:5:end); % plot every 5t data point
>> y5 = y(1:5:end);

>> plot(x,y,"b-", x5,y5, 'r.); % blue-line, red dots
>> xlabel("x"); ylabel("y"); grid;

>> title(C"f(x) = e™M-0.5x} sin(5x)");

y=1f(x)=e “0-5% in(5x)

(Xx,y) plotted as blue-solid line

/(x5 ,Y5) pairs plotted as red dots

multiple (x,y) pairs---not
necessarily of the same
Size---can be plotted with
different line styles.

>>

>>
>>
>>
>>

e = exp(-0.5*x);
plot(x,y,"b-", Xx,e,"r--", x,-e,"m--");
xlabel ("x"); ylabel("y"); grid;
e™{-0.5x} sin(bx)");

title("f(x) =

legend("e™{-0.5x} sin(bx)",

" _e~{-0.5x}",

y=fx)=e"

5

% envelope of T(X)

"er{-0.5x}", ...

“location®™,"SE"); /
X sin(5x) ellipsis
south-east continues to
next line

plotting multiple curves
and adding legends

legends can also be
Inserted with plot editor

10. Function Maxima and Minima

Engineers always like to optimize their designs by finding

the best possible solutions. This usually amounts to
minimizing or maximizing some function of the design
parameters.

Suppose a function f(x) has a minimum (or maximum) within an
Interval [a,b], or, a <x <b. The following three methods can
be used to find it:

1. Graphical method using the function min (or max)
2. Using the built-in function fminbnd
3. Using the function fzero, (requires the derivative of f(x))

(use Tminsearch for multivariable functions)

MATLAB implementation of the three methods

f=0x --. % define your function here
% F(X) must admit vector I1nputs
% and return vector outputs

.|x = linspace(a,b,N); % larger N works better
[fmin,imin] = min(F(X)); % imin = index at min
xmin = x(imin); % where the minimum is
plot(x,f(x), xmin,fmin,'0"); % display it

[Xmin,fmin] = fminbnd(f,a,b); % search in [a,b]

F=0X) ... % define derivative of f(X)
% or use symbolic toolbox

X
=
>

I

fzero(F,x0); % search near x0
fmin = f(xmin); % minimum value of (%)

T = 0(X) Xx-M - 4%*x;
X = linspace(0, 1.5, 150);
[TO,10] = min(F(x)); xO0 = x(i0);

plot(x,f(x),"b-", x0,f0,"ro");
xlabel ("x"); grid;
legend (" F(x)=x"M-4x", "(x0,f0)");

0 !
1 N0 — f(X)=X4-4X 77777
O (x0, {0)
1> R NG S A
2 N
-4 1 1
0 0.5 1 1.5

Example: finding
the minimum of a

curve using the
function min

O Is minimum of
the array y=F(x)

10 is the index of

array at its min,
l.e., FO=y(10)

X0 is value of x at
the minimum of y

exact values are:

x0 1
O -3

both fminbnd and

finding the minimum of f(x) using fzero admit function
the function fminbnd handles as inputs

T =0(x) x-M — 4*x; % Find minimum of F(x)
[X1,f1] = fminbnd(¥,0,1.5); % in the interval[0,1.5]

finding the minimum of f(x) using the function
fzero, requires derivative F(x) = df(x)/dx

F = @(X) 4*x."3 — 4; % derivative of f(X)
x2 = fzero(F, 0.5); 2 = f(x2);

[xO,x1,x2; fO,f1,f2] % compare the three methods

ans =
0.9966 1.0000 1.0000
-2.9999 -3.0000 -3.0000

11. Relational and Logical Operators

Relational and logical functions

find, logical, true, false

ischar, i1sequal, i1sfinite, i1sinf, 1sinteger
islogical, i1snan, isreal

>> doc 1s* % list of all “is” functions
>> help logical % convert to logical

>> help true % logical 1

>> help false % logical O

>> help relop % relational operators

>> help ops % same as help /

>> help find % Indices of non-zero elements
>> help precedence

Relational Operators

== equal

not equal

less than

greater than

less than or equal

greater than or equal

~

I v A i

\4
[

Logical Operators

& logical AND

&& logical AND for scalars w/ short-circuiting
I logical OR

11 logical OR for scalars w/ short-circuiting
~ logical NOT

xor exclusive OR

any true 1T any elements are non-zero

all true 1f all elements are non-zero

\

VvV

@)
I

O O O 1 0

>> find(a==-3) % otherwise, it returns empty

1 2 2 S

>> a
>> Db

Il
H
-
N
@)
I
W
\l
e

>> g>=2, b<=2

ans =
0 1 0 0 1
ans =
0 1 0 1 0
>> (a>=2) & (b<=2) % logical AND
ans =
0 1 0 0 0
>> (a>=2) | (b<=2) % logical OR
ans =

o) 1 O 1 1

[1 3 4 -3 7]; logical indexing

>> a =
>> k = (a>=2), m = find(a>=2)
k =
0 1 1 0 1 class(Kk) is logical
m =
2 3)
>> a(m), a(k) - k is logical index, m is normal
ans =
3 4 4
ans =
3 4 7

class (1) is double, even though

> 1 =[0110 1] 1==Kk is true

>> a(i)
??? Subscript indices must either be real positive
integers or logicals.

% but a(logical (1)) works

e
A — . . -
3 4 NaN logical indexing

-5 Inf 2
>> k = isfinite(A) >> find(k)
Kk = ans =

1 1 0 -

1 0 1 E

/' 3

>> A(k) % listed column-wise 6
ans = /

3

-5

4

2
>> A(~k)=0 % set non-finite entries to zero
A =

3

o)
2

12. Program Flow Control

Program flow is controlled by the
following control structures:

. for...end % loops
while . . . end

If...end % conditional
If...else...end
if...elseif...else...end

switch . . . case . .. otherwise. . .end

N ok w NBE

break, continue, return

for-loops and conditional ifs are by far the
most commonly used control stuctures

for variable = expression for-loops

statements ...
end

>> N=1000; S=0;

>> for n=1:N, N 1
S =S + 1/n"2; % compute the sum: S = Zz —
12
end n=1
>> S
S =
1.6439

> n = 1:N; S

sum(1./n."2) % vectorized version

while condition
statements ...
end

>> N=1000; S=0; n=1;

while-loops

>> while n<=N, v 1
S =S + 1/n"2; % compute the sum: § = ZZ —
n = n+l; n=1 n:
end
>> S
S =
1.6439
>> pin2/6 % note the limiting sum, II%__ ii ;L_
ans = % First derived by Euler 6 B ne

1.6449

n=1

three versions of conditional ifs

1T condition 1T condition
statements ... statements ...
end elseilft condition
statements ...
i condition elseilft condition
statements ... statements ...
else else
statements ... statements ...
end end

|

several el seil T statements
may be present,

elsei T does not need a matching end

>> X = 1;
>> % x = 0/0;
>> U x = 1/0;

>> 1f 1sinf(x),
disp("x 1s Infinite");
elseif 1snan(x),
disp("x Is not-a-number®);
else
disp("x 1s finite number®);
end

X 1S Finite number
% X 1S not-a-number
% X 1S InfFinite

switch expression -«

case expression -l

case expression « |
statements ...
otherwise
statements ...
end

X =[1, -4, 5, 3]; p = Inf;

switch p
case 1
N = sum(abs(x));
case 2
N = sqgrt(sum(abs(x).”2));
case iInf
N = max(abs(x));
otherwise

N = sqrt(sum(abs(x).~2));

end

this expression is evaluated first,
and if its value matches any of

statements . .. - these, then the corresponding
case-statements are executed

several case statements
may be present

equivalent calculation using
the built-in function norm :

/

% N norm(x,1);

o

% N = norm(x,2);
% N = norm(x, inf);

% N

norm(x,2);

L, L,, and L_, norms of a vector

x = [X1,X2,...,XN]

Ixlleo = max(Ix1l, Ix2l, ..., Ixnl)

>> help norm % vector and matrix norms

Example: Overlapping Echoes

DSP application, implementing a Digital Audio Effect
reads a wave file and plays a 20-second portion of it

then, adds three overlapping, slightly delayed, copies of
itself and plays the result

llustrates the use of for-loops, if-statements, and
pre-allocation to speed up processing

complete program, echoes.m, and supporting
wave files are in the zip file, echoes.zip.

block-diagram realization

X(t) V »%» y(®

delay | D
a
X({t-D)
|

X(t—2D)

D
3
X(t—=3D) L&

y(t) 4 shifted copies
X(t) ax(t—D) ,
/ a“ x(t—2D)
/ a3x (t=3D)
h,
0 D 2D 3D t

y(t) = x(t) + ax(t-D) + a?x(t—2D) + a3x(t—3D)

% echoes.m — listen to overlapping echoes
clear all;

[X,Fs] = wavread("dsummer.wav"®); % read wave fTile and i1ts Fs

N = min(round(20*Fs), length(x)); % play no more than 20 sec
X = xX(1:N); % truncate x to length N
sound(x,Fs); % play X

T =1/2; D = round(T*Fs); % echo delay i1n sec and In samples

Fs, N, D % here, Fs=44100, N=839242, D=22050
a=0.5; % multiplier coefficient
y = zeros(size(x)); % pre-allocation speeds up processing

Note: the sampling rate Fs is the number of samples per second, thus,

N = 20*Fs = (20 sec)*(samples/sec) = number of samples in 20 sec

tic % tic-toc - measures execution time

for n=1:length(x), % construct overlapped signal y
1T n<=D,
y(n) = x(n);

elseift n<=2*D,
y(n) = x(n) + a * x(n-D);
elseit n<=3*D,
y(n) = x(n) + a * x(n-D) + a2 * x(n-2*D);
else,
y(n) = x(n) + a * x(n-D) + a2 * x(n-2*D) +...
a”3 * x(n-3*D);

end
end
roe proper indentation
' dabillity,
pause; sound(y,Fs): % play y Improves readability

try to read this

%tic for n=1:length(x),i1f n<=D,y(n)=x(n);elseif n<=2*D,y(n)=...
x(n)+a*x(n-D);;elseif n<=3*D,y(n)=x(n)+a*x(n-D)+a"2*x(n-2*D); ...
%else,y(n)=x(n)+a*x(n-D)+a"2*x(n-2*D)+a*3*x(n-3*D); end end. ..
%toc pause;sound(y,Fs);

pre-allocation results

wave file Fs N with without
JB.wav 16000 71472 0.02 sec 34.44 sec
nodelay.wav 22050 266758 0.13 sec 702.33 sec
dsummer.wav 44100 839242 0.39 sec too long

13. Matrix Algebra

e dot product

e matrix-vector multiplication
e matrix-matrix multiplication
e matrix inverse

e solving linear systems

a'b

alb=a'b=a-b=a. xb

NS

= [al, apz, 613]

math

notations

|

a, b must have the same
dimension

MATLAB
notation

b;g = albl -+ agbg -+ agbg

hermitian conjugate of a

a'b

= lay, ay, a;]

alb=a'b=a xb

|

|

math
notations

MATLAB
notation

dot product
for complex-valued vectors

= ai“bl + Q;bz + a;kbg

for real-valued vectors, the
operations " and .

are equivalent

1] 4
a= 21, b=]-5
_3 2

C

(1,2, =3]| =5

2

=1X44+2x(=5)+

(—3)x2

>> a = [1; 2; -3];
>> a"*b
ans =
-12
>> dot(a,b)
ans =
-12

b = [4; -5; 2];

% burnlt-1n function

—12

matrix-vector multiplication

14, 1, 2]

|1, —1, 1]

12, 1, 1]

combine three dot product
operations into a single
matrix-vector multiplication

|

4 1 2 D
I =1 1]]|-4]|=
2 1 1||—7

5 2
4= 2
—7 ~1

~1 3
3| = | -2
2 3

—3 1
1| =|2
6 1

[5 -1 -3
4 3 1

™

matrix-matrix multiplication

combine three matrix-vector
multiplications into a single
matrix-matrix multiplication

—_ o D

|
w N W
— P =

>S>A=[412;1-11; 21 1]
A =

4 1 2
1 -1 1
2 1 1

> B =[5 -1 -3; -4 31; -7 2 6]

) -1 -3
-4 3 1
~7 2 6
>> C = A*B
C =
2 3 1
2 -2 2

solving linear systems

X1 — Xo>+ X3 =20 = 1 —1 1 X9
2X1 +X>+Xx3=10 | A3

Ax=b = x=A"1b=A\b

/

10
20

N
AXx

10

always use the backslash operator to
solve a linear system, instead of inv(A)

solving linear systems (using backslash)

4X1+X2+2X3 =10 _4 1 2_ _Xl_ _10
X1 — X» + X3 =20 = 1 —1 1 Xo | =120
2X1 +Xo+Xx3 =10 _2 1 1_ _XB_ _10
> A=[412;1-11; 21 1];
>> b = [10 20 10]";
>> X = A\b
X =
-30
10
60
>> norm(A*x-b) % test - should be zero
ans =

o)

solving linear systems (using inv)

4xX1 + Xo + 2x3 =10

X1 — X» 4+ X3 =20

2X1 + X+ Xx3 =10

=

4 1 2]|x 10
I =1 1][x2|=1]20
2 1 1][x3 10

[4 12;1-11; 21 1];

>> A =
>> p = [10 20 10]";
>> 1nv(A)
ans =
2 -1 -3
-1 0 2
-3 2 5
>> x = 1nv(A) * b
X =
-30
10

% same as A™N(-1)

% but prefer backslash

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani
	Example: Overlapping Echoes

