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Week  1  - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week  2  - Basics – operators, functions, program flow (ch. 2 & 3)
Week  3  - Matrices (ch. 4)
Week  4  - Plotting – 2D and 3D plots (ch. 5)
Week  5  - User-defined functions (ch. 6)
Week  6  - Input-output formatting – fprintf, sprintf (ch. 7)
Week  7  - Program flow control & relational operators (ch. 8)
Week  8  - Matrix algebra – solving linear equations (ch. 9)
Week  9  - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed.,  Prentice Hall, 2009



Matrix Manipulation

defining matrices
accessing matrix elements
colon operator, submatrices
transposing a matrix
changing/adding/deleting entries
concatenating matrices
special matrices
diagonals, block-diagonal matrices
replicating and reshaping matrices
element-wise operations
functions of matrices (element & column operations)
meshgrid, ndgrid
examples: DTMF keypad, Taylor series, polynomials



>> A = [1 2 3; 2 0 4; 0 8 5]
A =

1     2     3 
2     0     4
0     8     5    

>> size(A)          % [N,M] = size(A), NxM matrix
ans =

3     3

matrix indexing
convention

defining matrices

column    row
dimension   dimension

NxM
matrix

M

N



accessing matrix elements

>> A(1,1)     % 11 matrix element
ans =

1

>> A(2,3)     % 23 matrix element
ans =

4

>> A(:,2)     % second column
ans =

2
0
8

>> A(3,:)      % third row
ans =

0     8     5



concatenating
columns>> A = [1 2 3; 2 0 4; 0 8 5]

A =
1     2     3
2     0     4
0     8     5

>> A(:)     % concatenate columns
ans =

1
2
0
2
0
8
3
4
5

A(6)

A(9)

concatenating rows 
B = A';
B(:)

column-wise indexing



building a matrix column-wise

>> A = zeros(3);                       

>> A(:) = [1 2 0  2 0 8  3 4 5]   

A =
1     2     3
2     0     4
0     8     5

define desired size

enter elements in a 
row (or column)

elements are re-arranged 
column-wise 



sub-matrices

A = [ 2     4     1     3     5
8     6     7     4     9
3     2     5     2     1
5     6     1     8     4 ];

A(3:4, 2:4)
ans =

2     5     2
6     1     8

A(1:3, [1,5])
ans =

2     5
8     9
3     1



>> A = [1 2 3 4; 2 0 5 6; 0 8 7 9]   % size 3x4
A =

1     2     3     4
2     0     5     6     
0     8     7     9

>> A'                                % size 4x3
ans =

1     2     0
2     0     8
3     5     7
4     6     9

transposing a matrix

=>

transposition operation



adding/deleting
rows or columns>> A = [1 2 3; 2 0 4; 0 8 5]

>> A(5,:) = [7 8 9]    % add a fifth row
A =

1     2     3
2     0     4
0     8     5
0     0     0
7     8     9

>> A(:,2) = []         % delete second column
A =

1     3
2     4
0     5
0     0
7     9

4th row is automatically 
allocated

[ ]  denotes an empty 0x0 matrix

alternatively, redefine A by 
omitting its second column:

>> A = A(:,[1,3]);



replacing rows
or columns

>> A = [1 2 3; 2 0 4; 0 8 5]
A =

1     2     3
2     0     4
0     8     5

>> A(:,2) = [20 30 40]'   % replace second column
A =

1    20     3
2    30     4
0    40     5

>> A(3,:) = [50 60 70]    % replace third row
A =

1    20     3
2    30     4

50    60    70



concatenating
matrices

>> A = [1 2; 3 4]; 
>> B = [5 6; 7 8];

>> C = [A, B]
C =

1     2     5     6
3     4     7     8

>> C = [A; B]    
C =

1     2
3     4
5     6
7     8

A,B must have same
number of rows

A,B must have same
number of columns



appending columns or rows

>> A = [1 2; 3 4; 5 6]; 
>> b = [7; 7; 7];
>> c = [8 8 8]';

>> B = [A,b,c]
B =

1   2   7   8
3   4   7   8
5   6   7   8

>> C = [b,A,c]
C =

7   1   2   8
7   3   4   8
7   5   6   8

>> D = [A; [7 7];]
>> E = [[8 8]; A]
D =

1     2
3     4
5     6
7     7

E =
8     8
1     2
3     4
5     6



special matriceseye(3)   % 3x3 identity matrix
ans =

1     0     0
0     1     0
0     0     1

zeros(3)  % 3x3 matrix of zeros
ans =

0     0     0
0     0     0
0     0     0

ones(3)   % 3x3 matrix of ones
ans =

1     1     1
1     1     1
1     1     1

>> help eye
>> help zeros
>> help ones

general usage:

eye(N,M)
zeros(N,M)
ones(N,M)



>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.
zeros       - Zeros array.
ones        - Ones array.
eye         - Identity matrix.
repmat      - Replicate and tile array.
linspace    - Linearly spaced vector.
logspace    - Logarithmically spaced vector.

etc.

>> help gallery % various test matrices

for more information on elementary matrices see:



diagonals

>> help diag

>> A = [1 2 3; 4 5 6; 7 8 9]
A =

1     2     3
4     5     6
7     8     9

>> d = diag(A)       % main diagonal
d =

1
5
9

>> d = diag(A,-1)    % first sub-diagonal
d =

4
8



how to make a diagonal matrix

>> d = [4 5 6];      % or, column d = [4 5 6]';

A = diag(d)          % d is main diagonal
A =

4     0     0
0     5     0
0     0     6

>> d = [4 5];

A = diag(d,1)        % d is first upper-diagonal
A =

0     4     0
0     0     5
0     0     0



how to make
block-diagonal 
matrices

>> A = [1 2; 3 4]; B = [5 6; 7 8]; 
>> C = [9 8 7; 6 5 4; 3 2 1];

>> blkdiag(A,B)
ans =

1     2     0     0
3     4     0     0
0     0     5     6
0     0     7     8

>> blkdiag(A,B,C)
ans =

1     2     0     0     0     0     0
3     4     0     0     0     0     0
0     0     5     6     0     0     0
0     0     7     8     0     0     0
0     0     0     0     9     8     7
0     0     0     0     6     5     4
0     0     0     0     3     2     1

matrix dimensions expand
as necessary



replicating matrices

>> A=[1 2; 3 4]
A =

1     2
3     4

>> repmat(A,3,4)
ans =

1    2    1    2    1    2    1    2
3    4    3    4    3    4    3    4
1    2    1    2    1    2    1    2
3    4    3    4    3    4    3    4
1    2    1    2    1    2    1    2
3    4    3    4    3    4    3    4



reshaping a matrix
or a vector

B = reshape(A,P,Q)

reshapes an NxM matrix into a PxQ
matrix (must have PxQ=NxM)

B is formed column-wise from the 
elements of A

>> a = [1 2 3 4 5 6];

>> reshape(a,2,3)
ans =

1     3     5
2     4     6

>> reshape(a,3,2)
ans =

1     4
2     5
3     6

>> reshape(a,6,1)
ans =

1
2
3
4
5
6



reshaping a matrix
or a vectorA = [1   5   9

2   6   5
3   7   0
4   8   4];

>> reshape(A,3,4)
ans =

1   4   7   5
2   5   8   0
3   6   9   4

>> reshape(A,2,6)
ans =

1   3   5   7   9   0
2   4   6   8   5   4

>> reshape(A,6,2)
ans =

1     7
2     8
3     9
4     5
5     0
6     4



>> A = [1 2; 3 4]
A =

1     2
3     4

>> [A, A.^2; 2.^A, A^2]      % form sub-blocks
ans =

1     2     1     4
3     4     9    16
2     4     7    10     % note A.^2 ~= A^2
8    16    15    22

>> B = 10.^A; 
>> [B, log10(B)]
ans =

10         100           1           2
1000       10000           3           4

element-wise
operations



>> A=[1 4; 8 2], B=[1 2; 2 1]
A =

1     4
8     2

B =
1     2
2     1

>> A./B
ans =

1     2
4     2

>> A.\B
ans =

1.0000    0.5000
0.2500    0.5000

element-wise
operations

But note the matrix operations:

>> sym(A/B)  % A*inv(B)
ans =

[  7/3, -2/3]
[ -4/3, 14/3]

>> A\B       % inv(A)*B
ans =

0.2   0.0
0.2   0.5



>> A=[1 4; 8 2], B=[1 2; 2 1]
A =

1     4
8     2

B =
1     2
2     1

>> A.*B
ans = 

1     8
16     2

>> A.^B
ans =

1    16
64     2

element-wise
operations

>> B.^A
ans =

1    16
256     1



functions of matrices

many functions operate
element-wise on matrices
e.g., trig, exp, log functions

others, operate column-wise
e.g., min, max, sort, diff,
mean, std, median, 
sum, cumsum, prod, cumprod

>> X = [pi/2, pi/3; pi/4, pi/8]
X =

1.5708    1.0472
0.7854    0.3927

>> sin(X)
ans =

1.0000    0.8660
0.7071    0.3827

>> sin(sym(X))
ans =
[         1,             3^(1/2)/2]
[ 2^(1/2)/2, (2 - 2^(1/2))^(1/2)/2]



functions of matrices

A = [8     5     8
9     1     3
2     4     5
6     2     2];

>> sum(A)
ans =

25    12    18

>> cumsum(A)
ans =

8     5     8
17     6    11
19    10    16
25    12    18

>> sum(A,2)
ans =

21
13
11
10

>> cumsum(A,2)
ans =

8    13    21
9    10    13
2     6    11
6     8    10

functions that operate column-wise
can also operate row-wise by 
using a second argument



functions of matrices

A = [8     5     8
9     1     3
2     4     5
6     2     2];

>> mean(A), mean(A,2)
ans =

6.25  3.00  4.50
ans =

7.0000
4.3333
3.6667
3.3333 min, max require a 

sightly different syntax 
for row-wise operation,
similarly for diff, std

>> [m,i]=min(A)
m =

2   1   2
i =

3   2   4

>> [m,i]=min(A,[],2);
>> [m,i]
ans =

5  2
1  2
2  1
2  2

means computed across rows



functions of matricesA = [8     5     8
9     1     3
2     4     5
6     2     2];

>> fliplr(A)
ans =

8     5     8
3     1     9
5     4     2
2     2     6

>> flipud(A)
ans =

6     2     2
2     4     5
9     1     3
8     5     8

rotate by 90 degrees

reverse each row

reverse each column

>> rot90(A)
ans =

8     3     5     2
5     1     4     2
8     9     2     6

flipud(rot90(A)) and
rot90(fliplr(A)) 
are the same as A'



( )x , y1  3y3

y

x

( )x , y2  3 ( )x , y3  3 ( )x , y4  3

( )x , y1  2y2 ( )x , y2  2 ( )x , y4  2( )x , y3  2

( )x , y1  1y1

x1

( )x , y2  1

x2

( )x , y3  1

x3

( )x , y4  1

x4

( )x , y1  1y1

y

x

( )x , y2  1 ( )x , y3  1 ( )x , y4  1

( )x , y1  2y2 ( )x , y2  2 ( )x , y4  2( )x , y3  2

( )x , y1  3y3

x1

( )x , y2  3

x2

( )x , y3  3

x3

( )x , y4  3

x4

meshgrid

x = [x1,  x2,  x3,  x4]
y = [y1,  y2,  y3]

[X,Y] = meshgrid(x,y)

meshgrid
ndgrid

a function
z = f(x,y)
defines a surface



>> x = [1 2 3 4];  % N-dim
>> y = [5 6 7];    % M-dim

>> [X,Y] = meshgrid(x,y)
X =

1  2  3  4
1  2  3  4
1  2  3  4

Y =
5  5  5  5
6  6  6  6
7  7  7  7

>> [X,Y] = ndgrid(x,y)
X =

1  1  1
2  2  2
3  3  3
4  4 4

Y =
5  6  7
5  6  7
5  6  7
5  6  7

rows are 
copies of x

columns are 
copies of y

X,Y have size  MxN

X,Y have size  NxM

[Y,X] = meshgrid(y,x)
equivalent

meshgrid
ndgrid



x

x
y

yi xi

xj yj y

[X,Y] = meshgrid(x,y)

x = rows
y = columns

[X,Y] = ndgrid(x,y)

x = columns
y = rows

[Y,X] = meshgrid(y,x) [Y,X] = ndgrid(y,x)
equivalent

ndgridmeshgrid

i

j



x = linspace(-5,5,51);
y = linspace(-2,2,21);

[X,Y] = meshgrid(x,y);

Z = X.*Y + Y.^2 + X.^2;
figure; surf(X,Y,Z);

meshgrid is typically used
for surface plots, which are
graphs of functions of two
variables, z = f(x,y),  e.g.,

z = f(x,y) = x*y + x^2 + y^2

element-wise operations make 
sense because X,Y have the 
same dimensions.

Example 1:  Surface plot



t = [0 1 2 3 4]; 
v = [1 -2 3];

[T,V] = meshgrid(t,v); 
X1 = V.*T

[V,T] = meshgrid(v,t); 
X2 = V.*T

[T,V] = ndgrid(t,v);     
X3 = V.*T

[V,T] = ndgrid(v,t);     
X4 = V.*T

X1 =
0     1     2     3     4
0    -2    -4    -6    -8
0     3     6     9    12

X2 =
0     0     0
1    -2     3
2    -4     6
3    -6     9
4    -8    12

X3 =
0     0     0
1    -2     3
2    -4     6
3    -6     9
4    -8    12

X4 =
0     1     2     3     4
0    -2    -4    -6    -8
0     3     6     9    12

Example 2:
calculate  x = vt
at a vector of times t
for different values of v

t

v

v

t



Example 3:  Dual-Tone-Multi-Frequency (DTMF) keypad            
(aka, touch-tone phone)

1209 1336 1477 Hz

697 Hz

770 Hz

852 Hz

941 Hz

1 2 3

4 5 6

7 8 9

* 0 #

fH

fL

each key is 
mapped to a pair 
of low & high 
frequencies (fL,fH)

we may use ndgrid
to replicate fL across
columns, and fH 
along rows



keypad 
matrix

K = ['1'    '2'    '3'        
'4'    '5'    '6'
'7'    '8'    '9'
'*'    '0'    '#'];      

% equivalently, 
% K = ['123'; '456'; '789'; '*0#'];

fL = [697, 770, 852, 941];
fH = [1209, 1336, 1477];

[FL,FH] = ndgrid(fL,fH);

complete code
in keypad.m



s = input('enter number to dial: ', 's');

fs = 8192;          % soundcard sampling rate
T = 1/fs;           % sampling time interval
Td = 1/4;           % duration of each key, sec
Tb = 1/10;          % blanking time, sec
Nb = round(Tb*fs);  % blanking time samples
yb = zeros(1,Nb);   % blanking signal samples

t = 0:T:Td;         % time vector for each key

y = [];             % initialize overall signal

enter a phone number to dial, e.g., s = 2125551212,
set up sampling rate for sound card, set playing time of
each key, and blanking time between keys



for k=1:length(s)

[i,j] = find(K==s(k));                          

x = sin(2*pi* FL(i,j) * t) +... 
sin(2*pi * FH(i,j) * t);   

y = [y, x, yb];                                 

end

sound(y,fs);

find the location 
of key within the 
keypad matrix

append to 
overall signal

play overall
signal

Note: the phone number s encoded into the signal y can be 
retrieved at the receiver by appropriate post-processing of y. 

One method for doing this is via the discrete-time Fourier transform
and is included in the program keypad.m. However, we will not cover 
it in this course (you’ll learn about it in your DSP courses).



% y = [];
% for k=1:length(s)
%    [i,j] = find(K==s(k)); 
%     x = sin(2*pi* fL(i) * t) +... 
%         sin(2*pi * fH(j) * t); 
%   y = [y, x, yb];                                   
% end
% sound(y,fs)

equivalent method
w/o using ndgrid

% y = [];
% for k=1:length(s)
%    q = find(K==s(k)); 
%    x = sin(2*pi* FL(q) * t) +... 
%        sin(2*pi * FH(q) * t); 
%    y = [y, x, yb];                                  
% end
% sound(y,fs)

equivalent method
using column-wise
matrix indexing

included in keypad.m



understanding the 
comparison method
and the use of find

>> K = ['1'    '2'    '3'        
'4'    '5'    '6'
'7'    '8'    '9'
'*'    '0'    '#'];

>> K=='8'
ans =

0     0     0
0     0     0
0     1     0
0     0     0

>> [i,j] = find(K=='8')
i =

3
j =

2

>> q = find(K=='8')
q =

7

compares every 
element of K with '8'

i,j matrix indices of
the location of  '8'

find the location of the 
correct element of K

q is the column-wise 
index of  '8'  in K



Example 4:  Vectorized Taylor series calculations

x

n

ndgrid or
meshgrid

n

x

meshgrid
or ndgrid

may be viewed as a matrix in 
the variables (x,n),  and 
summed along the n dimension

sum

sum



ndgrid method:
x = columns
n = rows
sum row-wise

[X,n] = ndgrid(x, 0:N);              

S = sum(X.^n ./ factorial(n), 2);     

meshgrid method:
n = columns
x = rows
sum column-wise

[X,n] = meshgrid(x, 0:N);              

S = sum(X.^n ./ factorial(n));     

S = reshape(S,size(x));

x

n

ndgrid
method

n

x

meshgrid
method

x can be a column, row, or matrix, 
but it is used as x(:) inside ndgrid

reshape S into column, row, 
or matrix to match the given 
shape of x



S = zeros(size(x));
n = 0:N;

alternative methods with 
partial or no vectorization

for n=0:N,
S = S + x.^n / factorial(n);

end

x is vectorized, but not n

for i=1:length(x),
for n=0:N,

S(i) = S(i) + x(i)^n / factorial(n);
end

end

for i=1:length(x),
S(i) = sum(x(i).^n ./ factorial(n));

end

n is vectorized, but not x

no vectorization



x = [1 3 0 -4 10]'; N = 30;        % x is column

[X,n] = meshgrid(x, 0:N);              
S = sum(X.^n ./ factorial(n));
S = reshape(S,size(x));

fprintf('\n     x        exp(x)        S(x,N)\n');
fprintf('   ---------------------------------\n');
fprintf('% 7.2f  %12.6f  %12.6f\n', [x,exp(x),S]');

x        exp(x)        S(x,N)
---------------------------------
1.00      2.718282      2.718282
3.00     20.085537     20.085537
0.00      1.000000      1.000000

-4.00      0.018316      0.018316
10.00  22026.465795  22026.464036

later on we’ll discuss how to pick N to achieve 
any desired degree of convergence

needs larger N



Example 5:  Polynomial evaluation

x

n

meshgrid

may be viewed as a matrix in 
the variables (x,n),  and 
summed along the n dimension

M = length(c)-1;
[n,X] = meshgrid(0:M, x);
C = meshgrid(c,x);

P = sum(C .* X.^(M-n), 2);

P = reshape(P,size(x));

sum

why did we use [n,X]
instead of [X,n]?



x = [1, 2, 3]; c = [1, -3, 4, 2];

M = length(c)-1;
[n,X] = meshgrid(0:M, x);
C = meshgrid(c,x);

P = sum(C .* X.^(M-n), 2);

P = reshape(P,size(x))
P =

4     6    14

polyval(c,x)
ans =

4     6    14

polyval is the standard
built-in function for 
polynomial evaluation



Example 6:  Peaks

x = linspace(0,10,201);
a = [1 3 6 8]; 
b = [0.1, 0.2, 0.2, 0.1]; 
c = [1 2 3 1];

[A,X] = meshgrid(a,x);
B = meshgrid(b,x);
C = meshgrid(c,x);

S = sum(C./((X-A).^2 + B.^2), 2);
S = reshape(S,size(x));

x

n,a,b,c

the polynomial method easily generalizes 
to other parametric curves

sum
meshgrid

known as Lorentzian
curves, used for 
modeling chemical 
spectral peaks
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x

figure; plot(x,S,'b-');

xaxis(0,10, 0:10); 
yaxis(0,120, 0:20:120); 
xlabel('\itx'); grid;

S = zeros(size(x));

for n=1:length(c),
S = S + c(n)./((x-a(n)).^2 + b(n)^2);

end

conventional method
w/o using meshgrid
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