Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department
orfanidi@ece.rutgers.edu

week 3

— | Week

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
3 - Matrices (ch. 4)

Week 4 - Plotting — 2D and 3D plots (ch. 5)

Week 5 - User-defined functions (ch. 6)

Week 6 - Input-output formatting — fprintf, sprintf (ch. 7)

Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)

Week 9 - Structures & cell arrays (ch. 10)

Week 10 - Symbolic math (ch. 11)

Week 11 - Numerical methods — data fitting (ch. 12)

Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

Matrix Manipulation

defining matrices

accessing matrix elements

colon operator, submatrices

transposing a matrix

changing/adding/deleting entries

concatenating matrices

special matrices

diagonals, block-diagonal matrices

replicating and reshaping matrices

element-wise operations

functions of matrices (element & column operations)
meshgrid, ndgrid

examples: DTMF keypad, Taylor series, polynomials

defining matrices

— j-th column

Al A2 Agg i . .
A=|As As Aoy | matrix indexing
Aar Awo A i-th row [L convention

31 A32 A33 iA(l,])

>>A=1[123;204; 08 5]

A = M

1 2 3

2 0 4 N NxM

0 3 5 maitrix
>> si1ze(A) % [N,M] = size(A), NxM matrix
ans = /N

3 3 column row

dimension dimension

accessing matrix elements

>> A(1,1)
ans =
1

>> A(2,3)
ans =
4

>> A(:,2)
ans =

2
o)
8

>> A(3,:)
ans =

% 11 matrix element

% 23 matrix element

% second column

% third row

S

>>A=[123;204; 08 5]

A =
1
2
0
>> AC:)
ans =
1
2
0
0
8
3
4
)

2
0
8

3
4
5

concatenating
columns

% concatenate columns

+<— column-wise indexing

concatenating rows

B = A";
B(:)

building a matrix column-wise

define desired size

>> A = zeros(3); < |

>>A(:) =[1L20 208 34 5]

A =

enter elements in a
row (or column)

ON P
COONMN

3
4
5

elements are re-arranged
column-wise

sub-matrices

oON O D
L N

ans =

3
4
2
8

AR OO

transposing a matrix

> A =J1234; 2056; 08 7 9] % s1ze 3x4
A =

1 2 3 4

2 0 5 6

0 8 7 9
>> A" % si1ze 4x3
ans =

1 2 0

2 0 8

3 5 7

4 6 9

=l

transposition operation

adding/deleting
> A =[123; 204; 08 5] rows or columns

>> A(5,2) = [7 89] % add a fifth row
A =

1 2 3

2 0 4

0 8 5 _ _

0 0 0 . |4"row is automatically

7 8 9 allocated
>> A(:,2) =[] % delete second column
A =

1 3 [] denotes an empty 0xO matrix

2 4

O S alternatively, redefine A by

(7) 8 omitting its second column:

>> A = A, 11,31);

A = or columns

1 2 3
2 0 4
O 8 S

>> A(:,2) = [20 30 40]° % replace second column
A =

1 20 3
2 30 4
O 40 S

>> A(3,:) = [50 60 70] % replace third row

1 20 3
2 30 4
50 60 70

concatenating
matrices

>> C

W Pk

N o1 w e

[1 2; 3 4];
[5 6; 7 8];
[A, Bl

2 5

4 7
[A; B]

2

4

6

8

A B must have same
number of rows

o O

A B must have same
number of columns

appending columns or rows

>> A
>> Db
>> C

>> B

I o1 w k- [11l

SURNIEN

[1 2; 3 4; 5 6];
[7; 7; 71;
[8 8 8]";

[A,b,c]

2
4
6

v
v
v

[b,A,c]

g1 w kK

O PA~DN

o0 OO 00

o 00 00

M
[

N 01 Wk

g Wk

= =

eye(3) % 3x3 identity matrix

ans =

1 0 0

0 1 0 >> help eye

0 0 1 >> help zeros
>> help ones

zeros(3) % 3x3 matrix of zeros

ans = .
0 0 0 general usage:
0 0 0 eye(N,M)
0 0 0 zeros(N,M)
_ ones(N,M)
ones(3) % 3x3 matrix of ones
ans =
1 1 1
1 1 1

1 1 1

for more information on elementary matrices see:

>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.

Zeros - Zeros array.

ones - Ones array.

eye - ldentity matrix.

repmat - Replicate and tile array.

I 1nspace - Linearly spaced vector.
logspace - Logarithmically spaced vector.
etcC.

>> help gallery % various test matrices

> A =]12 3; 45 6; 7 8 9]

A =

>>

o
[

1
4
y

O 01 -

0 A

2
S
8

drag(A)

diag(A,-1)

3
6
9

>> help diag

% main dragonal

% First sub-diagonal

how to make a diagonal matrix

>>d = [4 5 6];

A
A

drag(d)

O o b

0
5
0
>> d = [4 5];

dirag(d, 1)

>
1l

O
0
O

O o b

o OO

o U1 O

% or, column d = [4 5 6]";

% d 1s main diagonal

% d 1s first upper-diagonal

>> A =1 2; 3 4]; B=1[56; 7 8];
> C =[987; 654; 321];
>> blkdiag(A,B) how o make
ans = | block-diagonal

1 2 ¢+ 0 0 matrices

3 4 i o ! 0

0 0 5 6

0 0 4 8

matrix dimensions expand

>> blkdiag(A,B,C) - as necessary
ans =

1 2 0 0 0 0

S 4 + 0 o . 0 | O 0

0 0 5 6 | O 0 0

0 0 4 8 0 0 0

ooo
oo
ooo
©ooo
W o ©
N U1 00
RN NN

n
()
O
—
i
®
&
(@))
-
=
M
O
o
()
| -

>> A=[1 2; 3 4]

A

2
4

1
3

>> repmat(A,3,4)

ans

llllllllllllllllllllllllllll

llllllllllllllllllllllllllll

||||||||||||||||||||||||||||

_ _ B = reshape(A,P,Q)
reshaping a matrix
or a vector reshapes an NxM matrix into a PxQ

matrix (must have PxQ=NxM)

> a =[12 345 6]; |Bisformed column-wise from the
elements of A

>> reshape(a,2,3)
ans =
1

3 5 >> reshape(a,6,1)
2 4 6

ans =

>> reshape(a,3,2)
ans =

OO0 WNLE

1 4
2 S}
3 6

>
[
H
B~ WDNPEP
00 N O O1
>~ O 01 o

1;

>> reshape(A,3,4)
ans =
1 4 7
2 5 8
3 6 9

>> reshape(A,2,6)
ans =

1 3 S
2 4 6

> O O1

-
8

9
)

0]
4

reshaping a matrix
or a vector

>> reshape(A,6,2)
ans =

OO WNPE
>~ O 01 © 00~

>> A = [1 2; 3 4] element-wise
A = ’ operations

1 2

3 4
>> [A, A.N2; 2.MA, AN2] % form sub-blocks
ans =

1 2 1 4

3 .4 1 9 16

2 4 4 10 % note A.N2 ~= AN2

8 16 15 22

>> B = 10.7MA;
>> [B, 10ogl0(B)]
ans =
10 100
1000 10000

w
AN

>> A=[1 4; 8 2], B=[1 2; 2 1]

A =
1
8
B =
1
2
>> A./B
ans =
1
4
>> A_\B
ans =
1.0000

0.2500

A
2

2

=

N N

0.5000
0.5000

element-wise
operations

But note the matrix operations:

>> sym(A/B) % A*inv(B)
ans =

| 7/3, -2/3]

| -4/3, 14/3]

>> A\B % inv(A)*B
ans

o O Il

2 0.0
.2 0.5

>> A=[1 4; 8 2], B=[1 2; 2 1] element-wise
A = operations

1 4

8 2
B =

1 2

2 1
>> A.*B
ans =

1 8

16 2

>> A."B >> B.MNA
ans = ans =

1 16 1 16

64 2 256 1

functions of matrices

>> X = [p1/2, pi/3; pi/4, pi/8]

X =
é- ?;gi (1) gg;g many functions operate
'] element-wise on matrices
>> sin(X) e.g., trig, exp, log functions
ans =

others, operate column-wise
e.g., min, max, sort, diff,
mean, std, median,

sum, cumsum, prod, cumprod

1.0000 0.8660
0.7071 0.3827

>> sin(sym(X))
ans =

[1, 3IN(1/2) /2]
[2™°(1/72)/72, (2 - 2~(1/2))™N(1/2)/2]

functions of matrices functions that operate column-wise

can also operate row-wise by
using a second argument

A = [8 5 8 l
9 1 3
2 4 5 >> sum(A,2)
6 2 2]; ans =
21
>> sum(A) 13
ans = 11
25 12 18 10
>> cumsum(A) >> cumsum(A,2)
ans = ans =
8 5 8 38 13 21
17 6 11 9 10 13
19 10 16 2 6 11
25 12 18 6 8 10

functions of matrices

A=

N &= O
N U1 W 0

1

>> mean(A), mean(A,2)
ans =
6.25 3.00 4.50

means computed aCross rows

>> [m, 1]=min(A)
m =

2 1 2
I =

3 2 4

>> [m, 1]=min(A, [] 2);
>> m, 1]
ans =

NN = Ol
NEFEDNDN

min, max require a
sightly different syntax

for row-wise operation,
similarly for di ff, std

Als 5 8
9 1 3
2 4 0) >> rot90(A)
6 2 213 ans =
>> Fliplr(A) g i i g
ans =
3 5 3 8 9 2 6
3 1 9 I
5 4 2
5 5 6 rotate by 90 degrees

reverse each row
>> Flipud(A)
ans =

reverse each column

N/

flipud(rot90(A)) and
rotoo(fliplr(A))
are the same as A'

OarFr DN

OO N O®
coOwoOorT N

y A
Ya;r (X1,Y3) (X2, ¥3) (X3, Y3) (X4, ¥3) ndgrid

Vol YD) 0 YD) 0 YD) (X Y2)

e (Xg, Yo (X2, Y1)—(X3, Y1) (X4, Y1) a function
I T L)
defines a surface

i Gay) Gy ey (ev)

A DR CAABRCAIA B SR 11 grid

Va0, YD) O, ¥a) (e, V) (X Vo)

yV
X = [x1, x2, x3, x4] _X1 X2 X3 X4_ _)/1 Y1 Vi)’1_
y=1[yl y2, y3] X=|X1 X2 X3 X4|, Y=[)2)s)2
[X,Y] = meshgrid(x,y) X1 X2 X3 X4 V3 Y3 Y3 V3|

>> x = [1 2 3 4]; % N-dim
>y =[5 6 7]; % M-dim
>> [X,Y] = meshgrid(x,y) [Y,X] = meshgrid(y,Xx)
X = | equivalent
1 g g j >> [X,Y] = ndgrid(x,y)
1 2 3 4 |rowsare X =
Y = copies of x 1 1 1
5 5 5 5 2 2 2
6 6 6 6 s 3 3
7 7 7 7 4 4 4

columnsare | |Y =
copies of y

T

X,Y have size MxN

U1 U1 U1 O
QN Ne W)
SUENIENIEN

X,Y have size NxM

X

®
*
,,,",
,,,“,
Y

R
coeo
soses
coses

r

[X,Y] = meshgrid(x,y)

X =TOWS

y = columns

equivalent

[Y,X] = meshgrid(y,x)

=

l

sesoe

see e
e S

[X,Y] = ndgrid(x,y)

X = columns
Y = rows

[Y,X] = ndgrid(y,X)

Example 1. Surface plot

x = linspace(-5,5,51);
y = linspace(-2,2,21);

i element-wise operations make

[X,Y] = meshgrid(x,y); - sense because X,Y have the
.| | same dimensions.

Z = X.*Y + Y. N2 + X. N2,

figure; surf(X,Y,Z2);

meshgrid is typically used
for surface plots, which are
graphs of functions of two
variables, z = f(x,y), e.g.,

z = f(X,)y) = x*y + x"2 + y"2

Example 2:
calculate x = vt

at a vector of times t
for different values of v

t
V

[0O1 2 3 4];
[1 -2 3];

[T,V] = meshgrid(t,v);
X1 = V_.*T

[V,T] = meshgrid(v,t);
X2 = V_*T

[T,V] = ndgrid(t,v);
X3 = V_.*T

[V,T] = ndgrid(v,t);
X4 = V_*T

X1

X2

X3

X4

>~ WDNNPELO A WNPEFO o OO

o O

o

N OO wOoO

N OO WwOoO

3 4
-6 -8
9 12

4
-6 -8
9 12

Example 3: Dual-Tone-Multi-Frequency (DTMF) keypad

(aka, touch-tone phone)

697 Hz

770 Hz

852 Hz

941 Hz

fH
1209 1336 1477 Hz

each key Is
mapped to a pair
of low & high
frequencies (fL,fH)

we may use ndgrid
to replicate fL across
columns, and fH
along rows

complete code
In keypad.m

K=["1°" "2" "3
I4I I5I I6I keypad
I7I I8I I9I ma‘tnx
I*I IOI I#I];
% equivalently,
% K = ["123"; "456%; "789"; "*0#"];
fL = [697, 770, 852, 941];
fH = [1209, 1336, 1477];
[FL,FH] = ndgrid(fL,fH);
| 697 697 697 | [1209 1336 1477 |
Fo_ 770 770 770 F 1209 1336 1477
L= 1852 852 852 H= 11209 1336 1477
| 941 941 941 | | 1209 1336 1477

s = input(“enter number to dial: *, "s");

fs = 8192; %
T = 1/Fs; %

Td = 1/4; %
Tb = 1/10; %
Nb = round(Tb*fs); %
yb = zeros(1,Nb); %
t = 0:T:-Td; %
y = L1; %

soundcard sampling rate
sampling time i1nterval
duration of each key, sec
blanking time, sec
blanking time samples
blanking signal samples

time vector for each key

inttialize overall signal

enter a phone number to dial, e.g., s = 2125551212,

set up sampling rate for sound card, set playing time of
each key, and blanking time between keys

for k=1:length(s)

. _ find the location
[1.]J] = find(K==s(k)); > of key within the

X = sin(2*pi* FL(i,j) * t) +... keypad matrix

sin(2*pi * FH(i,j) * t);

append to

y = Ly, X, yb]l;) overall signal

end

play overall

sound(y, fs); signal

A

Note: the phone number S encoded into the signal y can be
retrieved at the receiver by appropriate post-processing of y.

One method for doing this is via the discrete-time Fourier transform
and is included in the program keypad.m. However, we will not cover
it in this course (you'll learn about it in your DSP courses).

%
%
%
%
%
%
%
%

(a=)

%
%
%
%
%
%
%
%

y = [1:
for k=1:length(s)

q = fFind(K==s(k));
X = sin(2*p1* FL(g) * ©) +...
sin(2*p1 * FH(Q) * t);
y = Ly, x, ybl;
end
sound(y,fs)
y = L1;

for k=1:length(s)
[1.3]1 = find(K==s(Kk));
X =
sin(2*p1 * THQ) * t);
y = Ly, X, ybl;
end
sound(y,fs)

equivalent method
using column-wise
matrix indexing

Included in keypad.m

sin(2*pi* fL(i) * t) +...

equivalent method
w/o using ndgrid

>> K = ['1' "o "3
4" "5* "6
7" "8" "oF
T 0" "#°];

understanding the

comparison method
and the use of find

<———— compares every
ans = element of K with '8'
0 0 0
0 0 0 . _
0 1 0 Ti1nd the location of the
0 0 0 / correct element of K
'
>> [1,J] = find(K=="8") >> q = find(K=="8")
I = q =
3 T 7
J= ~ _ _
2 I,] matrix indices of g is the column-wise

the location of '8' Index of '8 In K

Example 4. Vectorized Taylor series calculations

. x> X = .
e—1+x+§+§+---—z _—hmz

X may be viewed as a matrix in
S5(x,N)= — the variables (x,n), and
n=0 """ summed along the n dimension

n X

» SUM >

J ndgrid or J meshgrid
X n

meshgrid or ndgrid

sum

X can be a column, row, or matrix,
but it is used as x(:) inside ndgrid

[X,n] = ndgrid(x, O0:N);

ndgrid method:
X = columns

N = rows

sum row-wise

S = sum(X.-™n ./ factorial(n), 2);
[X,n] = meshgrid(x, 0:N);

S = sum(X.~n ./ factorial(n));

S = reshape(S,size(xX));

T

reshape S into column, row,
or matrix to match the given
shape of x

v

meshgrid method:
n = columns

X = rows

sum column-wise

X

ndgrid
method

X

meshgrid
method

nV

alternative methods with
S = zeros(size(X)); partial or no vectorization

N = 0:-:N;

_
for 1=1:length(x),

S(1) = sum(x(1).™n ./ factorial(n));
end

X IS vectorized, but not n

for n=0:N,
S =S + x.»n / factorial(n);
end

. no vectorization
for 1=1:length(x), _

for n=0:N,
S(r1) = S(n1) + x(1))™n / factorial(n);
end
end

X =130 -4 10]°; N = 30; % x 1s column
[X,n] = meshgrid(x, O:N);
S = sum(X.™n ./ factorial(n));
S = reshape(S,size(x));
fprintf("\n X exp(x) S(xX,N)\n");
foraint¢f¢ ------»-»-»-»-»-»-»-»oo o : it . - \n");
fprintf("% 7.2F %12.6F %l2.6FA\n", [X,exp(x),S]");
X exp(x) S(x,N)

1.00 2.718282 2.718282

3.00 20.085537 20.085537

0.00 1.000000 1.000000

-4.00 0.018316 0.018316

10.00 22026.465795 22026.464036 <«— needs larger N

later on we’ll discuss how to pick N to achieve
any desired degree of convergence

Example 5: Polynomial evaluation

M-l ..

P(x)= cox™ + c|x c 4 CM_IX + CM

M) ..
B M—n may be viewed as a matrix in
= Z CnX the variables (x,n), and
n=0 summed along the n dimension
c = [co,C1y-.-, 0]
M = length(c)-1; i sum
[n,X] = meshgrid(0:M, X); .
C = meshgrid(c,x); meshgrid
X v

P = sum(C .* X.*(M-n), 2);

why did we use [n, X]
P = reshape(P,si1ze(X)); instead of [X,n]?

P(x)=x>—3x"+4x+2

length(c)-1;
X] meshgrid(0:M, X);
meshgrid(c,Xx);

n

sum(C .* X.*(M-n), 2)

reshape(P,si1ze(X))

U T U O X

4 6 14

= [1, 2, 3]; c = [1, -3, 4, 2];

polyval(c,Xx)
ans

4 6 14

polyval is the standard
built-in function for
polynomial evaluation

Example 6: Peaks

the polynomial method easily generalizes

to other parametric curves

T

A

nwwmw OWm O T X

linspace(0,10,201);
[1 3 6 8];

[0.1, 0.2, 0.2, O0.1];
[1 2 3 1];

X] = meshgrid(a,x);
meshgrid(b,x);
meshgrid(c,x);

sum(C.Z((X-A)."2 + B."2), 2);
reshape(S,size(x));

CMm
(X — (ZM) 2-|—b}2\4

known as Lorentzian
curves, used for
modeling chemical

spectral peaks

n,a,b,c
> SUM

meshgrid

figure; plot(x,S,"b-");

xaxi1s(0,10, 0:10);
yaxis(0,120, 0:20:120);
xlabel ("\1tx"); grid;

120
100

80

20

60 |

0 |

j

0 \:\\:\:‘
0O 1 2 3 4 5 6 7 8 9 10

X

S = zeros(size(x));

for n=1:length(c),

S =S + c(n).Z((x-a(n)).-~2 + b(nN)"2);

end

conventional method
w/0 using meshgrid

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

