
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 3

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output formatting – fprintf, sprintf (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

Matrix Manipulation

defining matrices
accessing matrix elements
colon operator, submatrices
transposing a matrix
changing/adding/deleting entries
concatenating matrices
special matrices
diagonals, block-diagonal matrices
replicating and reshaping matrices
element-wise operations
functions of matrices (element & column operations)
meshgrid, ndgrid
examples: DTMF keypad, Taylor series, polynomials

>> A = [1 2 3; 2 0 4; 0 8 5]
A =

1 2 3
2 0 4
0 8 5

>> size(A) % [N,M] = size(A), NxM matrix
ans =

3 3

matrix indexing
convention

defining matrices

column row
dimension dimension

NxM
matrix

M

N

accessing matrix elements

>> A(1,1) % 11 matrix element
ans =

1

>> A(2,3) % 23 matrix element
ans =

4

>> A(:,2) % second column
ans =

2
0
8

>> A(3,:) % third row
ans =

0 8 5

concatenating
columns>> A = [1 2 3; 2 0 4; 0 8 5]

A =
1 2 3
2 0 4
0 8 5

>> A(:) % concatenate columns
ans =

1
2
0
2
0
8
3
4
5

A(6)

A(9)

concatenating rows
B = A';
B(:)

column-wise indexing

building a matrix column-wise

>> A = zeros(3);

>> A(:) = [1 2 0 2 0 8 3 4 5]

A =
1 2 3
2 0 4
0 8 5

define desired size

enter elements in a
row (or column)

elements are re-arranged
column-wise

sub-matrices

A = [2 4 1 3 5
8 6 7 4 9
3 2 5 2 1
5 6 1 8 4];

A(3:4, 2:4)
ans =

2 5 2
6 1 8

A(1:3, [1,5])
ans =

2 5
8 9
3 1

>> A = [1 2 3 4; 2 0 5 6; 0 8 7 9] % size 3x4
A =

1 2 3 4
2 0 5 6
0 8 7 9

>> A' % size 4x3
ans =

1 2 0
2 0 8
3 5 7
4 6 9

transposing a matrix

=>

transposition operation

adding/deleting
rows or columns>> A = [1 2 3; 2 0 4; 0 8 5]

>> A(5,:) = [7 8 9] % add a fifth row
A =

1 2 3
2 0 4
0 8 5
0 0 0
7 8 9

>> A(:,2) = [] % delete second column
A =

1 3
2 4
0 5
0 0
7 9

4th row is automatically
allocated

[] denotes an empty 0x0 matrix

alternatively, redefine A by
omitting its second column:

>> A = A(:,[1,3]);

replacing rows
or columns

>> A = [1 2 3; 2 0 4; 0 8 5]
A =

1 2 3
2 0 4
0 8 5

>> A(:,2) = [20 30 40]' % replace second column
A =

1 20 3
2 30 4
0 40 5

>> A(3,:) = [50 60 70] % replace third row
A =

1 20 3
2 30 4

50 60 70

concatenating
matrices

>> A = [1 2; 3 4];
>> B = [5 6; 7 8];

>> C = [A, B]
C =

1 2 5 6
3 4 7 8

>> C = [A; B]
C =

1 2
3 4
5 6
7 8

A,B must have same
number of rows

A,B must have same
number of columns

appending columns or rows

>> A = [1 2; 3 4; 5 6];
>> b = [7; 7; 7];
>> c = [8 8 8]';

>> B = [A,b,c]
B =

1 2 7 8
3 4 7 8
5 6 7 8

>> C = [b,A,c]
C =

7 1 2 8
7 3 4 8
7 5 6 8

>> D = [A; [7 7];]
>> E = [[8 8]; A]
D =

1 2
3 4
5 6
7 7

E =
8 8
1 2
3 4
5 6

special matriceseye(3) % 3x3 identity matrix
ans =

1 0 0
0 1 0
0 0 1

zeros(3) % 3x3 matrix of zeros
ans =

0 0 0
0 0 0
0 0 0

ones(3) % 3x3 matrix of ones
ans =

1 1 1
1 1 1
1 1 1

>> help eye
>> help zeros
>> help ones

general usage:

eye(N,M)
zeros(N,M)
ones(N,M)

>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.
zeros - Zeros array.
ones - Ones array.
eye - Identity matrix.
repmat - Replicate and tile array.
linspace - Linearly spaced vector.
logspace - Logarithmically spaced vector.

etc.

>> help gallery % various test matrices

for more information on elementary matrices see:

diagonals

>> help diag

>> A = [1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

>> d = diag(A) % main diagonal
d =

1
5
9

>> d = diag(A,-1) % first sub-diagonal
d =

4
8

how to make a diagonal matrix

>> d = [4 5 6]; % or, column d = [4 5 6]';

A = diag(d) % d is main diagonal
A =

4 0 0
0 5 0
0 0 6

>> d = [4 5];

A = diag(d,1) % d is first upper-diagonal
A =

0 4 0
0 0 5
0 0 0

how to make
block-diagonal
matrices

>> A = [1 2; 3 4]; B = [5 6; 7 8];
>> C = [9 8 7; 6 5 4; 3 2 1];

>> blkdiag(A,B)
ans =

1 2 0 0
3 4 0 0
0 0 5 6
0 0 7 8

>> blkdiag(A,B,C)
ans =

1 2 0 0 0 0 0
3 4 0 0 0 0 0
0 0 5 6 0 0 0
0 0 7 8 0 0 0
0 0 0 0 9 8 7
0 0 0 0 6 5 4
0 0 0 0 3 2 1

matrix dimensions expand
as necessary

replicating matrices

>> A=[1 2; 3 4]
A =

1 2
3 4

>> repmat(A,3,4)
ans =

1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4

reshaping a matrix
or a vector

B = reshape(A,P,Q)

reshapes an NxM matrix into a PxQ
matrix (must have PxQ=NxM)

B is formed column-wise from the
elements of A

>> a = [1 2 3 4 5 6];

>> reshape(a,2,3)
ans =

1 3 5
2 4 6

>> reshape(a,3,2)
ans =

1 4
2 5
3 6

>> reshape(a,6,1)
ans =

1
2
3
4
5
6

reshaping a matrix
or a vectorA = [1 5 9

2 6 5
3 7 0
4 8 4];

>> reshape(A,3,4)
ans =

1 4 7 5
2 5 8 0
3 6 9 4

>> reshape(A,2,6)
ans =

1 3 5 7 9 0
2 4 6 8 5 4

>> reshape(A,6,2)
ans =

1 7
2 8
3 9
4 5
5 0
6 4

>> A = [1 2; 3 4]
A =

1 2
3 4

>> [A, A.^2; 2.^A, A^2] % form sub-blocks
ans =

1 2 1 4
3 4 9 16
2 4 7 10 % note A.^2 ~= A^2
8 16 15 22

>> B = 10.^A;
>> [B, log10(B)]
ans =

10 100 1 2
1000 10000 3 4

element-wise
operations

>> A=[1 4; 8 2], B=[1 2; 2 1]
A =

1 4
8 2

B =
1 2
2 1

>> A./B
ans =

1 2
4 2

>> A.\B
ans =

1.0000 0.5000
0.2500 0.5000

element-wise
operations

But note the matrix operations:

>> sym(A/B) % A*inv(B)
ans =

[7/3, -2/3]
[-4/3, 14/3]

>> A\B % inv(A)*B
ans =

0.2 0.0
0.2 0.5

>> A=[1 4; 8 2], B=[1 2; 2 1]
A =

1 4
8 2

B =
1 2
2 1

>> A.*B
ans =

1 8
16 2

>> A.^B
ans =

1 16
64 2

element-wise
operations

>> B.^A
ans =

1 16
256 1

functions of matrices

many functions operate
element-wise on matrices
e.g., trig, exp, log functions

others, operate column-wise
e.g., min, max, sort, diff,
mean, std, median,
sum, cumsum, prod, cumprod

>> X = [pi/2, pi/3; pi/4, pi/8]
X =

1.5708 1.0472
0.7854 0.3927

>> sin(X)
ans =

1.0000 0.8660
0.7071 0.3827

>> sin(sym(X))
ans =
[1, 3^(1/2)/2]
[2^(1/2)/2, (2 - 2^(1/2))^(1/2)/2]

functions of matrices

A = [8 5 8
9 1 3
2 4 5
6 2 2];

>> sum(A)
ans =

25 12 18

>> cumsum(A)
ans =

8 5 8
17 6 11
19 10 16
25 12 18

>> sum(A,2)
ans =

21
13
11
10

>> cumsum(A,2)
ans =

8 13 21
9 10 13
2 6 11
6 8 10

functions that operate column-wise
can also operate row-wise by
using a second argument

functions of matrices

A = [8 5 8
9 1 3
2 4 5
6 2 2];

>> mean(A), mean(A,2)
ans =

6.25 3.00 4.50
ans =

7.0000
4.3333
3.6667
3.3333 min, max require a

sightly different syntax
for row-wise operation,
similarly for diff, std

>> [m,i]=min(A)
m =

2 1 2
i =

3 2 4

>> [m,i]=min(A,[],2);
>> [m,i]
ans =

5 2
1 2
2 1
2 2

means computed across rows

functions of matricesA = [8 5 8
9 1 3
2 4 5
6 2 2];

>> fliplr(A)
ans =

8 5 8
3 1 9
5 4 2
2 2 6

>> flipud(A)
ans =

6 2 2
2 4 5
9 1 3
8 5 8

rotate by 90 degrees

reverse each row

reverse each column

>> rot90(A)
ans =

8 3 5 2
5 1 4 2
8 9 2 6

flipud(rot90(A)) and
rot90(fliplr(A))
are the same as A'

()x , y1 3y3

y

x

()x , y2 3 ()x , y3 3 ()x , y4 3

()x , y1 2y2 ()x , y2 2 ()x , y4 2()x , y3 2

()x , y1 1y1

x1

()x , y2 1

x2

()x , y3 1

x3

()x , y4 1

x4

()x , y1 1y1

y

x

()x , y2 1 ()x , y3 1 ()x , y4 1

()x , y1 2y2 ()x , y2 2 ()x , y4 2()x , y3 2

()x , y1 3y3

x1

()x , y2 3

x2

()x , y3 3

x3

()x , y4 3

x4

meshgrid

x = [x1, x2, x3, x4]
y = [y1, y2, y3]

[X,Y] = meshgrid(x,y)

meshgrid
ndgrid

a function
z = f(x,y)
defines a surface

>> x = [1 2 3 4]; % N-dim
>> y = [5 6 7]; % M-dim

>> [X,Y] = meshgrid(x,y)
X =

1 2 3 4
1 2 3 4
1 2 3 4

Y =
5 5 5 5
6 6 6 6
7 7 7 7

>> [X,Y] = ndgrid(x,y)
X =

1 1 1
2 2 2
3 3 3
4 4 4

Y =
5 6 7
5 6 7
5 6 7
5 6 7

rows are
copies of x

columns are
copies of y

X,Y have size MxN

X,Y have size NxM

[Y,X] = meshgrid(y,x)
equivalent

meshgrid
ndgrid

x

x
y

yi xi

xj yj y

[X,Y] = meshgrid(x,y)

x = rows
y = columns

[X,Y] = ndgrid(x,y)

x = columns
y = rows

[Y,X] = meshgrid(y,x) [Y,X] = ndgrid(y,x)
equivalent

ndgridmeshgrid

i

j

x = linspace(-5,5,51);
y = linspace(-2,2,21);

[X,Y] = meshgrid(x,y);

Z = X.*Y + Y.^2 + X.^2;
figure; surf(X,Y,Z);

meshgrid is typically used
for surface plots, which are
graphs of functions of two
variables, z = f(x,y), e.g.,

z = f(x,y) = x*y + x^2 + y^2

element-wise operations make
sense because X,Y have the
same dimensions.

Example 1: Surface plot

t = [0 1 2 3 4];
v = [1 -2 3];

[T,V] = meshgrid(t,v);
X1 = V.*T

[V,T] = meshgrid(v,t);
X2 = V.*T

[T,V] = ndgrid(t,v);
X3 = V.*T

[V,T] = ndgrid(v,t);
X4 = V.*T

X1 =
0 1 2 3 4
0 -2 -4 -6 -8
0 3 6 9 12

X2 =
0 0 0
1 -2 3
2 -4 6
3 -6 9
4 -8 12

X3 =
0 0 0
1 -2 3
2 -4 6
3 -6 9
4 -8 12

X4 =
0 1 2 3 4
0 -2 -4 -6 -8
0 3 6 9 12

Example 2:
calculate x = vt
at a vector of times t
for different values of v

t

v

v

t

Example 3: Dual-Tone-Multi-Frequency (DTMF) keypad
(aka, touch-tone phone)

1209 1336 1477 Hz

697 Hz

770 Hz

852 Hz

941 Hz

1 2 3

4 5 6

7 8 9

* 0 #

fH

fL

each key is
mapped to a pair
of low & high
frequencies (fL,fH)

we may use ndgrid
to replicate fL across
columns, and fH
along rows

keypad
matrix

K = ['1' '2' '3'
'4' '5' '6'
'7' '8' '9'
'*' '0' '#'];

% equivalently,
% K = ['123'; '456'; '789'; '*0#'];

fL = [697, 770, 852, 941];
fH = [1209, 1336, 1477];

[FL,FH] = ndgrid(fL,fH);

complete code
in keypad.m

s = input('enter number to dial: ', 's');

fs = 8192; % soundcard sampling rate
T = 1/fs; % sampling time interval
Td = 1/4; % duration of each key, sec
Tb = 1/10; % blanking time, sec
Nb = round(Tb*fs); % blanking time samples
yb = zeros(1,Nb); % blanking signal samples

t = 0:T:Td; % time vector for each key

y = []; % initialize overall signal

enter a phone number to dial, e.g., s = 2125551212,
set up sampling rate for sound card, set playing time of
each key, and blanking time between keys

for k=1:length(s)

[i,j] = find(K==s(k));

x = sin(2*pi* FL(i,j) * t) +...
sin(2*pi * FH(i,j) * t);

y = [y, x, yb];

end

sound(y,fs);

find the location
of key within the
keypad matrix

append to
overall signal

play overall
signal

Note: the phone number s encoded into the signal y can be
retrieved at the receiver by appropriate post-processing of y.

One method for doing this is via the discrete-time Fourier transform
and is included in the program keypad.m. However, we will not cover
it in this course (you’ll learn about it in your DSP courses).

% y = [];
% for k=1:length(s)
% [i,j] = find(K==s(k));
% x = sin(2*pi* fL(i) * t) +...
% sin(2*pi * fH(j) * t);
% y = [y, x, yb];
% end
% sound(y,fs)

equivalent method
w/o using ndgrid

% y = [];
% for k=1:length(s)
% q = find(K==s(k));
% x = sin(2*pi* FL(q) * t) +...
% sin(2*pi * FH(q) * t);
% y = [y, x, yb];
% end
% sound(y,fs)

equivalent method
using column-wise
matrix indexing

included in keypad.m

understanding the
comparison method
and the use of find

>> K = ['1' '2' '3'
'4' '5' '6'
'7' '8' '9'
'*' '0' '#'];

>> K=='8'
ans =

0 0 0
0 0 0
0 1 0
0 0 0

>> [i,j] = find(K=='8')
i =

3
j =

2

>> q = find(K=='8')
q =

7

compares every
element of K with '8'

i,j matrix indices of
the location of '8'

find the location of the
correct element of K

q is the column-wise
index of '8' in K

Example 4: Vectorized Taylor series calculations

x

n

ndgrid or
meshgrid

n

x

meshgrid
or ndgrid

may be viewed as a matrix in
the variables (x,n), and
summed along the n dimension

sum

sum

ndgrid method:
x = columns
n = rows
sum row-wise

[X,n] = ndgrid(x, 0:N);

S = sum(X.^n ./ factorial(n), 2);

meshgrid method:
n = columns
x = rows
sum column-wise

[X,n] = meshgrid(x, 0:N);

S = sum(X.^n ./ factorial(n));

S = reshape(S,size(x));

x

n

ndgrid
method

n

x

meshgrid
method

x can be a column, row, or matrix,
but it is used as x(:) inside ndgrid

reshape S into column, row,
or matrix to match the given
shape of x

S = zeros(size(x));
n = 0:N;

alternative methods with
partial or no vectorization

for n=0:N,
S = S + x.^n / factorial(n);

end

x is vectorized, but not n

for i=1:length(x),
for n=0:N,

S(i) = S(i) + x(i)^n / factorial(n);
end

end

for i=1:length(x),
S(i) = sum(x(i).^n ./ factorial(n));

end

n is vectorized, but not x

no vectorization

x = [1 3 0 -4 10]'; N = 30; % x is column

[X,n] = meshgrid(x, 0:N);
S = sum(X.^n ./ factorial(n));
S = reshape(S,size(x));

fprintf('\n x exp(x) S(x,N)\n');
fprintf(' ---------------------------------\n');
fprintf('% 7.2f %12.6f %12.6f\n', [x,exp(x),S]');

x exp(x) S(x,N)

1.00 2.718282 2.718282
3.00 20.085537 20.085537
0.00 1.000000 1.000000

-4.00 0.018316 0.018316
10.00 22026.465795 22026.464036

later on we’ll discuss how to pick N to achieve
any desired degree of convergence

needs larger N

Example 5: Polynomial evaluation

x

n

meshgrid

may be viewed as a matrix in
the variables (x,n), and
summed along the n dimension

M = length(c)-1;
[n,X] = meshgrid(0:M, x);
C = meshgrid(c,x);

P = sum(C .* X.^(M-n), 2);

P = reshape(P,size(x));

sum

why did we use [n,X]
instead of [X,n]?

x = [1, 2, 3]; c = [1, -3, 4, 2];

M = length(c)-1;
[n,X] = meshgrid(0:M, x);
C = meshgrid(c,x);

P = sum(C .* X.^(M-n), 2);

P = reshape(P,size(x))
P =

4 6 14

polyval(c,x)
ans =

4 6 14

polyval is the standard
built-in function for
polynomial evaluation

Example 6: Peaks

x = linspace(0,10,201);
a = [1 3 6 8];
b = [0.1, 0.2, 0.2, 0.1];
c = [1 2 3 1];

[A,X] = meshgrid(a,x);
B = meshgrid(b,x);
C = meshgrid(c,x);

S = sum(C./((X-A).^2 + B.^2), 2);
S = reshape(S,size(x));

x

n,a,b,c

the polynomial method easily generalizes
to other parametric curves

sum
meshgrid

known as Lorentzian
curves, used for
modeling chemical
spectral peaks

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

x

figure; plot(x,S,'b-');

xaxis(0,10, 0:10);
yaxis(0,120, 0:20:120);
xlabel('\itx'); grid;

S = zeros(size(x));

for n=1:length(c),
S = S + c(n)./((x-a(n)).^2 + b(n)^2);

end

conventional method
w/o using meshgrid

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

