
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 4

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output formatting – fprintf, sprintf (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

Plotting

plot, line styles, colors, markers, multiple graphs
adding text, legends, plot editor
axis settings, subplots
fplot, ezplot, loglog, semilogy, plotyy
scatter, stem, stairs
bar graphs, histograms, pie charts, polar plots
3D plotting functions, meshgrid
plot3, stem3, bar3, pie3
contour, contourf
mesh, meshc, meshz, waterfall
surf, surfc, colormap, colorbar, shading
surfaces of revolution
convhull, voronoi, spy, gplot
animated plots, drawnow, getframe, movie

Review from Weeks 1 & 2

MATLAB has extensive facilities for the plotting of
curves and surfaces, and visualization.

Basic 2D plots of functions and (x,y) pairs can be
done with the functions:

plot, fplot, ezplot

>> help plot % 2-D plotting
>> help fplot % function plotting
>> help ezplot % easy function plotting

>> f = @(x) exp(-0.5*x).*sin(5*x);
>> fplot(f,[0,5]); % plot over interval [0,5]

If a function f(x) has already been defined by a function-
handle or inline, it can be plotted quickly with fplot,
ezplot, which are very similar. One only needs to
specify the plot range. For example:

A figure window opens up,
allowing further editing of the
graph, e.g., adding x,y axis
labels, titles, grid, changing
colors, and saving the graph
is some format, such as
WMF, PNG, or EPS.

0 1 2 3 4 5
-1

-0.5

0

0.5

1

x

y

>> x = linspace(0,5,101);
>> y = f(x);
>> plot(x,y,'b-'); % blue-solid line
>> xlabel('x'); ylabel('y'); grid;
>> title('f(x) = e^{-0.5x} sin(5x)');

0 1 2 3 4 5
-1

-0.5

0

0.5

1

x

y

y = f(x) = e -0.5x sin(5x)

using the plot function

plot annotation can be done
by separate commands, as
shown above, or from the plot
editor in the figure window.

>> x5 = x(1:5:end); % plot every 5th data point
>> y5 = y(1:5:end);
>> plot(x,y,'b-', x5,y5, 'r.'); % blue-line, red dots
>> xlabel('x'); ylabel('y'); grid;
>> title('f(x) = e^{-0.5x} sin(5x)');

multiple graphs on same plot

0 1 2 3 4 5
-1

-0.5

0

0.5

1

x

y

y = f(x) = e -0.5x sin(5x)

(x,y) plotted as blue-solid line

(x5,y5) pairs plotted as red dots

multiple (x,y) pairs---not
necessarily of the same
size---can be plotted with
different line styles.

0 1 2 3 4 5
-1

-0.5

0

0.5

1

x

y

y = f(x) = e -0.5x sin(5x)

 e-0.5x sin(5x)

 e-0.5x

 -e-0.5x

>> ye = exp(-0.5*x); % envelope of f(x)
>> plot(x,y,'b-', x,ye,'r--', x,-ye,'m--');
>> xlabel('x'); ylabel('y'); grid;
>> title('f(x) = e^{-0.5x} sin(5x)');
>> legend('e^{-0.5x} sin(5x)', 'e^{-0.5x}', ...

'-e^{-0.5x}', 'location','SE');

plotting multiple curves
and adding legends

ellipsis
continues to
next line

south-east

legends can also be
inserted with plot editor

plot(x,y, 'specifiers', 'property', prop_value);

plot

plot(x,y,'b-','linewidth',2,'markersize',12,...
'markeredgecolor','r',...
'markerfacecolor','g');

Example:

line width,
marker size,
marker color
color, marker

line style,
line color,
marker

Line Styles, Point Types, Colors, and Properties

hhexagram
ppentagram
>triang right
<triang left
^triangle up
vtriang dn

kblackddiamond
yyellowssquare
mmagenta*star
ccyan+plus--dashed
rredxx-mark-.dash-dot
ggreenocircle:dotted
bblue.point-solid

ColorTypeStyle

property name

linewidth
markersize
markeredgecolor
markerfacecolor

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

x = [1 2 3 4 5 6 7 8 9];
y = [3 4 9 3 5 3 7 5 1];

plot(x,y,'b-');

plot(x,y,'bs-', ...
'MarkerEdgeColor','r',...
'MarkerFaceColor','g')

line styles
& markers

plot(x,y,'b-', 'LineWidth',3);
hold on;
plot(x,y,'or', 'MarkerSize', 12, ...

'MarkerFaceColor','g');

0 2 4 6 8 10
0

2

4

6

8

10

default values

LineWidth = 0.5 points

MarkerSize = 6

FontSize = 10

plot(x1,y1,'opt1', x2,y2,'opt2', x2,y3,'opt3');

plot summary
insert additional option strings

x1,y1 may have different size than x2,y2, or x2,y3

plot(x1,y1,'specs1','prop1',val1);
hold on;
plot(x2,y2,'specs2','prop2',val3);
plot(x3,y3,'specs3','prop3',val3);
hold off;

hold on/off allows independent
specification of plot parameters

% x = M-vector, Y = MxN matrix

plot(x,Y);

% X = MxN matrix, Y = MxN matrix

plot(X,Y);

% Y = MxN real-valued matrix

plot(Y);

% Z = MxN complex-valued matrix

plot(Z);
plot(real(Z),imag(Z));

plot variants
plot each column of Y against x

plot each column of Y against each column of X

plot Y columns against their index

equivalent

for complex
X,Y only their
real parts are
used, and imag
parts ignored,

exception

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

theta = linspace(0,2*pi,361);

z = exp(j*theta);

figure; plot(z);
axis equal;
axis square;
grid;

How to plot a circle

Euler’s formula

imaginary
unit, j or i

http://en.wikipedia.org/wiki/Euler's_formula

adding text

gtext('text_string');
text(x,y,'text_string','property',value);

property

fontsize size of text font
color text color
fontangle normal, italic
fontweight normal, bold
backgroundcolor rectangular area of text
edgecolor edge of rectangular box
linewidth rectangular box
rotation text orientation
fontname specify font

can also be used in title, xlabel, ylabel, legend

properties can
also be set with
the plot editor

x = linspace(0,pi,100); y = sin(x);

plot(x/pi,y,'b','linewidth',2);

xaxis(0,1, 0:0.5:1); yaxis(0,1.2,0:0.5:1);
xlabel('{\itx}/\pi'); grid on;

str = 'max at {\itx} = \pi/2';

gtext(str,'fontsize',20);
gtext(str,'fontsize',20,'rotation',90);
gtext('sin(x)','fontsize',20,'rotation',60);
gtext('\alpha\beta\Gamma\Delta\omega\Omega');

adding text

text positions, colors, sizes, and background colors
can be fine-tuned from the plot editor (see net page)

0 0.5 1
0

0.5

1

x/π

max at x = π/2

m
ax

 a
t

x
=

π/
2

sin
(x

)

αβΓΔωΩ

adding text

find out the [x,y] coordinates
of a point using

[x,y] = ginput;

axis auto; % default settings
axis equal; % equal x,y units
axis square; % square box
axis off; % remove axes
axis on; % restore axes
axis tight; % limits from data range
axis ij; % matrix mode (i=vert, j=horiz)
axis xy; % cartesian mode

axis([xmin,xmax,ymin,ymax]); % limits
axis([xmin,xmax,ymin,ymax,zmin,zmax]);

xlim([xmin,xmax]); % set x-axis limits
ylim([ymin,ymax]);
zlim([zmin,zmax]);

set(gca, 'xtick', v); % v = tickmark vector
set(gca, 'ytick', v); % e.g., v = 0:2:10

axis settings

combined into the xaxis function

2D plotting functionsplot basic x-y plot
fplot function plot
ezplot function plot
loglog log x,y axes
semilogx log x-axis
semilogy log y-axis
plotyy left & right y-axes
polar polar plot
ezpolar polar
comet animated x-y plot
errorbar plot with error bars
stem,stairs stem and staircase
scatter scatter plot
bar,barh bar graphs
pie pie chart
hist histogram
fill,area polygon & area fill

-5 0 5
-1

-0.5

0

0.5

1

fplot, ezplotfplot(@sin, [-2,2]*pi);
fplot('sin', [-2,2]*pi);
fplot('sin(x)', [-2,2]*pi);
f = @(x) sin(x);
fplot(f, [-2,2]*pi);

linestyles & colors
can be changed from
the figure window, or

fplot(f, [-2,2]*pi, 'r');

fplot, ezplotezplot(@sin, [-2,2]*pi);
ezplot('sin', [-2,2]*pi);
ezplot('sin(x)', [-2,2]*pi);
f = @(x) sin(x);
ezplot(f, [-2,2]*pi);

-5 0 5

-1

-0.5

0

0.5

1

x

sin(x)

linestyles & colors
can be changed from
the figure window

fplot, ezplot

ezplot can plot
functions defined
implicitly, i.e.,
f(x,y) = 0

ezplot('x^2-y^4', [-pi,pi]);

f = @(x,y) x.^2 - y.^4;
ezplot(f, [-pi,pi]);

x

y

x2-y4 = 0

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

loglog plots Butterworth lowpass audio filter

N = 3
f0 = 400 Hz

0 400 800 1200 1600 2000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f (Hz)

low pass filter

 filter response
 3-dB cutoff

10*log10(0.5) = −3.01 dB

f = linspace(20,2000,100); % 20 Hz to 2 kHz
f0 = 400; % 3-dB frequency

H2 = 1./(1+ (f/f0).^6); % magnitude square

plot(f,H2,'b', 'linewidth',2);
hold on;
plot(f0,0.5,'r.', 'markersize',20);

xaxis(0,2000, 0:400:2000);
yaxis(0,1.1, 0:0.1:1); grid;
xlabel('{\itf} (Hz)');
title('low pass filter');

legend(' filter response', ' 3-dB cutoff',...
'location', 'ne');

loglog

10
1

10
2

10
3

10
4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

f (Hz)

low pass filter

loglog(f,H2, 'b', 'linewidth',2);

yaxis(10^(-5), 10^(0.5), 10.^(-5:0));
xlabel('{\itf} (Hz)'); grid;
title('low pass filter');

semilogy

0 500 1000 1500 2000
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

f (Hz)

low pass filter

semilogy(f,H2, 'b', 'linewidth',2);

yaxis(10^(-5), 10^(0.5), 10.^(-5:0));
xlabel('{\itf} (Hz)'); grid;
title('low pass filter');

dB vs. octaves

0 2 4 6 8
-50

-40

-30

-20

-10

0

octaves = log
2
(f/20)

de
ci

be
ls

low pass filter

plot(log2(f/20), 10*log10(H2),'b');

xaxis(0,8, 0:2:8); yaxis(-50,5,-50:10:0);
xlabel('octaves = log_2({\itf}/20)');
ylabel('decibels'); grid;
title('low pass filter');

filter gain in dB

dB vs. Hz

0 400 800 1200 1600 2000
-50

-40

-30

-20

-10

0

f (Hz)

de
ci

be
ls

low pass filter

 dB
 3-dB point

plot(f, 10*log10(H), 'b', 'linewidth',2);
hold on; plot(f0,10*log10(0.5), 'r.', ...
'markersize',20);

xaxis(0,2000, 0:400:2000); yaxis(-50,5,-50:10:0);
xlabel('{\itf} (Hz)'); ylabel('decibels'); grid;
title('low pass filter');
legend(' dB', ' 3-dB point',...
'location', 'ne');

3d order Butterworth lowpass filter
plotyy

frequency response

magnitude response (dB)

phase response (radians)

magnitude response
in absolute units

imaginary unit

f = linspace(20,2000,100); f0 = 400; s = j*f/f0;

H = 1./((1+s).*(1 + s + s.^2));
G = 10*log10(abs(H).^2);
th = angle(H) * 180/pi; % convert to degrees

[a,h1,h2] = plotyy(f,G, f,th);

xlabel('{\itf} (Hz)');

axes(a(1));
yaxis(-50,5, -50:10:0);
ylabel('magnitude (dB)');

axes(a(2));
yaxis(-190,190, -180:90:180);
ylabel('phase (degrees)');

set(h1, 'linewidth',2, 'color', 'b');
set(h2, 'linewidth',2, 'color', 'r');
legend([h1,h2], ' G(f)', ' \theta(f)');

plotyy

a=[a(1),a(2)],h1,h2
are axis and line handles,

axes activates left, then
right axis

set line properties

plotyy

0 500 1000 1500 2000
-50

-40

-30

-20

-10

0

f (Hz)

Third-degree Butterworth Filter
m

ag
ni

tu
de

 (d
B

)

0 500 1000 1500 2000
-180

-90

0

90

180

ph
as

e
(d

eg
re

es
)

 G(f)
 θ(f)

title, x-y axis labels, linestyles, colors, legends, and
tickmarks can also be set from the figure window
(select left or right y-axis from the plot browser)

similar to this,

but scatter allows more control
of the area and color of dots

scatter(x,y, area, color);

plot(x,y, '.');

>> help scatter
>> doc scatter

scatter plots

Example of a Monte Carlo
calculation of the area under
the curve: sin(x) , 0 ≤ x ≤ π

actual area is: A = 2

N=10000; rng(101);
x = pi * rand(1,N);
y = rand(1,N);

i = find(y < sin(x));
j = find(y > sin(x));

scatter(x(i),y(i),1,'r');
hold on;
scatter(x(j),y(j),1,'b');

x = linspace(0,pi,100);
y = sin(x);
plot(x,y,'r-');

A = length(i)/N * pi

A =
1.9915 estimated area is the rectangular area times the

fraction of the (x,y) pairs lying under the curve

http://en.wikipedia.org/wiki/Monte_Carlo_simulation

x = linspace(1,10,200);

y1 = sin(x).^2;
y2 = 1./x;
y3 = exp(-0.3*x).*cos(5*x);
y4 = 1./floor(x);

subplots

general syntax:

subplot(n,m,p);

n x m = box pattern

p = counting figures
across rows

3 x 4 pattern

1 2 3 4

5 6 7 8
9 10 11 12

subplot(3,4,1)
subplot(3,4,2)
etc.

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
-1

0

1

0 5 10
0

0.5

1

subplot(2,2,1); plot(x,y1,'b');
subplot(2,2,2); plot(x,y2,'r');
subplot(2,2,3); plot(x,y3,'m');
subplot(2,2,4); plot(x,y4,'g');

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
-1

-0.5

0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 2 4 6 8 10
-1

0

1

subplot(2,2,1); plot(x,y1,'b');
subplot(2,2,2); plot(x,y2,'r');
subplot(2,1,2); plot(x,y3,'g');

subplot(2,2,1); plot(x,y1,'b');
subplot(2,2,3); plot(x,y2,'r');
subplot(1,2,2); plot(x,y3,'g');

0 10 20 30 40
-1

-0.5

0

0.5

1

0 10 20 30 40
-1

-0.5

0

0.5

1

x = linspace(0,40,41);
y = sin(x/5);

stem(x,y,'b','marker','none');

stem(x,y,'b','marker','none');
hold on; plot(x,y,'r-');

useful for displaying
discrete-time signals
in DSP applications

stem plots

x = linspace(0,40,41);
y = sin(x/5);

stairs(x,y,'b');

0 10 20 30 40
-1

-0.5

0

0.5

1

stairs

Y =[8 1 2
9 3 9
2 5 9
9 7 5
6 9 8];

x = 2007:2011; y = Y(:,2);

subplot(2,2,1); bar(x,y);
subplot(2,2,2); bar(x,Y);
subplot(2,2,3); barh(Y);
subplot(2,2,4); bar(Y);

bar graphs

2007 2008 2009 2010 2011
0

5

10

2007 2008 2009 2010 2011
0

5

10

0 5 10

1

2

3

4

5

1 2 3 4 5
0

5

10

bar graphs

histograms

rng(101);
b = 0:5:100;
g = ceil(70 + 12 * randn(1,600));

figure; H = hist(g,b);

xaxis(0,105, 0:10:100);
title('grade distribution');

figure; H = hist(g,b);

h = findobj(gca,'Type','patch');
set(h,'FaceColor','b','EdgeColor','w');

xaxis(0,105,0:10:100);
title('grade distribution');
line([0,105],[0,0],'linewidth',0.3);

simulate 600
random grades

improved version

define bins

H = vector of histogram values

initialize generator

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
grade distribution

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
grade distribution

default

improved

histograms

mean = 70.86
std = 12.39
median = 71
mode = 69

F
D

C

C+

B

B+
A

4
14%

28%

15%

25%

6%
8%

Na = length(find(g>=90));
Nbp = length(find(g<90 & g>=85));
Nb = length(find(g<85 & g>=75));
Ncp = length(find(g<75 & g>=70));
Nc = length(find(g<70 & g>=60));
Nd = length(find(g<60 & g>=50));
Nf = length(find(g<50));
N = [Nf, Nd, Nc, Ncp, Nb, Nbp, Na];
pie(N, {'F','D','C','C+','B','B+','A'});
colormap cool;

Nper = round(100 * N/sum(N))

percentages were added
using the plot editor

number of A’s,
B+’s, B’s, etc.

% N = [26 81 169 89 152 38 45];
F D C C+ B B+ A

pie charts

30

210

60

240

90

270

120

300

150

330

180 0

logarithmic spiral

polar plots

30

210

60

240

90

270

120

300

150

330

180 0

Archimedean spiral

th = linspace(0,8*pi,800);

r = th;
polar(th,r);

r = exp(-0.15*th);
polar(th,r);

polar functions
r = f(θ)

x
r

y

θ

3D plotting functions

plot3,ezplot3 x-y-z line plot
contour,ezcontour contour plot
contourf,ezcontourf filled contour plot
mesh,ezmesh wireframe surface plot
meshc,ezmeshc wireframe plus contour
meshz wireframe with curtain
surf,ezsurf solid surface plot
surfc,ezsurfc surface plot plus contour
waterfall waterfall plot
stem3,scatter3 3D stem and scatter
bar3,bar3h,pie3 3D bar & pie charts
fill3 polygon fill
comet3 animated plot3

meshgrid was discussed in week-3

x = linspace(-5,5,51);
y = linspace(-5,5,51);

[X,Y] = meshgrid(x,y);

Z = Y .* exp(-(X.^2 + Y.^2)/2);

mesh(X,Y,Z);

mesh

meshc(X,Y,Z);
view(-45,15);
colorbar;

meshc

>> doc view;
>> doc colorbar;
>> doc colormap;

-5 0 5
-5

0

5

-0.5

0

0.5

-5 0 5
-5

0

5

-0.6

-0.4

-0.2

0

0.2

0.4

contour(X,Y,Z,15);
colorbar;

contourf(X,Y,Z,15);
colorbar;

contour
contourf

number of contour levels filled contour

surf(X,Y,Z);
colorbar;

x = linspace(-5,5,51);
y = linspace(-5,5,51);
[X,Y] = meshgrid(x,y);
Z = (X.^2 + Y.^2) .* exp(-(X.^2 + Y.^2)/2);

surf(X,Y,Z);
shading interp;
colorbar;

surf

meshz(X,Y,Z);
colormap cool;
colorbar;

x = linspace(-4,4,41);
y = linspace(-4,4,41);
[X,Y] = meshgrid(x,y);
Z = sinc(sqrt(X.^2 + Y.^2)); % help sinc

surfc(X,Y,Z);
colorbar;

meshz
surfc

-5
0

5

-5

0

5
-0.5

0

0.5

1

xy

-20
0

20

-20

0

20
0

50

100

xy

z

waterfall

plot3

waterfall(X,Y,Z);

t = 0:0.01:100;
x = exp(0.03*t).*cos(t);
y = exp(0.03*t).*sin(t);
z = t;
plot3(x,y,z,'b');
grid on;

unidirectional
mesh plot

0
1

2
1

2
3

4
5

-1
0
1

t/π
ω

0 1 2
-1

1

0 1 2
-1

1

0 1 2
-1

1

0 1 2
-1

1

0 1 2
-1

1

t/π

plot3

subplot
How to display
multiple curves
three-dimensionally

e.g., sin(ω t),
for ω = 1, 2, 3, 4, 5

t = linspace(0,2*pi,361);

C = {'b', 'r', 'k', 'g', 'm'};

for k=1:5,
subplot(5,1,k);
z = sin(k*t);
plot(t/pi,z,'color',C{k});
xaxis(0,2, 0:2);
yaxis(-1,1, [-1,1]);

end

xlabel('t/\pi');

subplot

t = linspace(0,2*pi,361);
y1 = ones(size(t));

C = {'b', 'r', 'k', 'g', 'm'};

for k=1:5,
z = sin(k*t);
plot3(t/pi, k*y1, z, 'color',C{k});
hold on;

end

hold off; box on; grid on;
xaxis(0,2, 0:2); yaxis(0,6, 1:5);
xlabel('t/\pi'); ylabel('\omega');

set(gca,'DataAspectRatio',[1, 1.5, 5]);

plot3

x
y

f x()z How to generate surfaces
of revolution, e.g., rotating
a function z = f(x) about
the x-axis

assume f(x) is defined
over a ≤ x ≤ b

x = linspace(a,b,N);
theta = linspace(0,2*pi,M);

[X,Th] = meshgrid(x,theta);

Y = f(X) .* cos(Th);
Z = f(X) .* sin(Th);

surf(X,Y,Z); % or mesh()

to rotate a function f(z)
about the z-axis, simply
interchange roles of x, z,
but do surf(X,Y,Z)

or, use the built-in
function cylinder

x = linspace(1,15,50);
th = linspace(0,2*pi,31);

[X,Th] = meshgrid(x,th);

F = 1./X;
Y = F.*cos(Th);
Z = F.*sin(Th);

surf(X,Y,Z);
view(-25,15);
colormap hsv;

Torricelli’s Trumpet,
aka Gabriel’s Horn,

f(x) = 1/x, 1 ≤ x < ∞

has finite volume,
but infinite area

http://en.wikipedia.org/wiki/Gabriel's_horn

Gabriel’s Cake

uses a step version
of f(x) = 1/x

(will be asssigned
as homework)

http://www.maa.org/pubs/Calc_articles/ma044.pdf

x = [6,3,2,7,4,3,9,4,8,7];
y = [7,6,7,6,5,1,3,9,8,5];

n = convhull(x,y);
plot(x(n),y(n),'b-',x,y,'ro');

convhull
voronoi

0 2 4 6 8 10
0

2

4

6

8

10
voronoi diagram

x

y

0 2 4 6 8 10
0

2

4

6

8

10
convex hull

x

y

voronoi(x,y,'b-');

0 20 40

0

10

20

30

40

nz = 200

0 20 40 60

0

10

20

30

40

50

60

nz = 180

h = [2 3 5 8 4]';
N = 40;
H = convmtx(h,N);
spy(H,'r.');

spy
B = bucky; spy(B,'r.');

60 x 60 sparse adjacency matrix
of the connectivity graph of the
Bucky ball, geodesic dome, soccer ball,
and the carbon-60 fullerene
moleculeconvolution matrix

sparsity pattern

http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Buckminster_Fuller
http://en.wikipedia.org/wiki/Fullerene

MATLAB code from here

[B,V] = bucky;
H = sparse(60,60);
k = 31:60;
H(k,k) = B(k,k);

% Visualize the variables
gplot(B-H,V,'b-');
hold on
gplot(H,V,'r-');
axis off equal square

gplot

plotting connectivity,
or, adjacency matrices

http://www.mathworks.com/products/matlab/demos.html?file=/products/demos/shipping/matlab/buckydem.html

Finally, movies…

Animated plots can be made with the functions
drawnow, getframe, movie

Please study and run the following M-files included
in movies.zip (placed on sakai) :

hoops.m - throwing the perfect basketball shot

receiver.m – moving wide-receiver catching
a ball thrown by the QB

cycloid.m - cycloid curve traced by a point on
a rolling wheel

dipmovie.m – EM wave emitted by a dipole antenna,
e.g., your cell phone (see Ref. ch.14)

http://www.ece.rutgers.edu/~orfanidi/ewa/

0 100 200 300
0

30

60

90

x

y

v = ωR

x(t) = R
£
ωt− cos(ωt)¤

y(t) = R
£
1 − cos(ωt)¤

0 5 10
0

5

10

x

y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0 20 40 60 80 100
0

10

20

30

x

y

load earth;
image(X);
colormap(map);
axis square; axis off

load flujet;
image(X);
axis off

Examples of loading images

load mri;
montage(D,jet);
title('Horizontal Slices');

Horizontal Slices

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

