
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department, Rm ELE-230

orfanidi@ece.rutgers.edu

week 5

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output formatting – fprintf, sprintf (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

User-Defined Functions

M-files, script files, function files
anonymous & inline functions
function handles
function functions, fzero,fminbnd
multiple inputs & outputs
subfunctions, nested functions
homework template function
function types
recursive functions, fractals

Script M-files contain commands to be executed as
though they were typed into the command window, i.e.,
they collect many commands together into a single file.

Function M-files must start with a function definition
line, and may accept input variables and/or return output
variables.

The function definition line has syntax:

function [outputs] = func(inputs)

where the function name, func, is arbitrary and must
match the name of the M-file, i.e., func.m

M-files: script or function files

% file rms.m calculates the
% root-mean-square (RMS) value and the
% mean-absolute value of a vector x:

function [r,m] = rms(x)
r = sqrt(sum(abs(x).^2) / length(x));
m = sum(abs(x)) / length(x);

>> x = -4:4;
>> [r,m] = rms(x)
r =

2.5820
m =

2.2222

>> r = rms(x)
r =

2.5820

returns only the
first output

Example:

Variables defined in a script file are known to the whole
current workspace, outside the script file.

Script files may not have any function definitions in them,
unless the functions are defined as inline or anonymous one-
line functions, e.g., using the function-handle @(x).

Variables in a function M-file are local to that function and
are not recognized outside the function (unless they are
declared as global variables, which is usually not
recommended.)

Function files may include the definition of other functions,
either as sub-functions, or as nested functions. This helps to
collect together all relevant functions into a single file (e.g.,
this is how you will be structuring your homework reports.)

Make up your own functions using three methods:

1. anonymous, with function-handle, @(x)
2. inline
3. M-file

>> f = @(x) exp(-0.5*x).*sin(5*x);

>> g = inline('exp(-0.5*x).*sin(5*x)');

% edit & save file h.m containing the lines:
function y = h(x)
y = exp(-0.5*x).*sin(5*x);

.* allows vector or matrix inputs x

example 1:

How to include parameters in functions

% method 1: define a,b first, then define f

a = 0.5; b = 5;
f = @(x) exp(-a*x).*sin(b*x);

% method 2: pass parameters as arguments to f

f = @(x,a,b) exp(-a*x).*sin(b*x);

% this defines the function f(x,a,b)
% so that f(x, 0.5, 5) would be equivalent to
% the f(x) defined in method 1.

example 2:

g = @(N) 2*sqrt(3) * cumsum(...
(-1).^(0:N)./(2*(0:N)+1)./3.^(0:N));

example 3: test the convergence of the following
series for π,

% edit & save file f.m containing the lines:
function y = f(N)
k=0:N;
y = 2*sqrt(3)*cumsum((-1).^k./(2*k+1)./3.^k);

convergence results:

N f(N) or g(N) digit accuracy

5 3.141 3
10 3.14159 5
15 3.14159265 8
20 3.1415926535 10
25 3.1415926535897 13

Inf 3.1415926535897...

Note: the functions f(N) and g(N) give equivalent results,

g(N) is a one-line definition, but much harder to read,

f(N) is easy to read, but requires its own M-file, here, f.m

example 4: Fourier series approximation of the function,

keep only the k=0:4 terms,
define the function F(x),
and compute and plot both
f(x) and F(x)

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

x/π

>> f = @(x) sign(x) .* (abs(x)<=pi);

>> F = @(x) 4/pi*(sin(x) + sin(3*x)/3 + ...
sin(5*x)/5 + sin(7*x)/7 + sin(9*x)/9);

>> x = linspace(-pi,pi,501);
>> plot(x/pi,f(x),'b-', x/pi,F(x),'r--');
>> xlabel('x/\pi');

Note: when x is a vector,
the logical statement

(abs(x)<=pi)

results in a vector of 0s or 1s,

see the section on relational
and logical operators

f = @(x,y) (x.^2 + y.^2) .* exp(-(x.^2 + y.^2)/2);

x = linspace(-5,5,51);
y = linspace(-5,5,51);
[X,Y] = meshgrid(x,y);

Z = f(X,Y);

surf(X,Y,Z);
colorbar;

example 5: Anonymous functions with multiple arguments

-6 -4 -2 0 2 4 6
-1

-0.5

0

0.5

1

x

g(f(x))

Anonymous functions can be nested

>> f = @(x) x.^2;
>> g = @(x) sin(cos(x));
>> h = @(x) g(f(x)); % i.e., sin(cos(x.^2))

>> fplot(h,[-6,6],'b-');
>> xlabel('x'); title('g(f(x))');

Function Handles

A function handle is a data type that allows the referencing
and evaluation of a function, as well as passing the function
as an input to other functions, e.g., to fplot, ezplot,
fzero, fminbnd, fminsearch.

In anonymous functions, e.g., f = @(x) (expression)
the defined quantity f is already a function handle.

For built-in, or user-defined functions in M-files, the function
handle is obtained by prepending the character @ in front of
the function name, e.g.,

f_handle = @sin;
f_handle = @my_function;

Function Functions

A number of MATLAB functions accept other functions as
arguments. Such functions cover the following categories:

1. Function optimization (min/maximization) , root finding, and
plotting, e.g., fplot, ezplot, fzero, fminbnd,
fminsearch.

2. Numerical integration (quadrature) , e.g., quad, and its variants.

3. Differential equation solvers, e.g., ode45, and others.

4. Initial value and boundary value problem solvers.

>> help funfun

The function argument is passed either as a function handle
(new method), or, as a string of the function name (old method)

-5 0 5
-1

-0.5

0

0.5

1

x

sin(cos(x2))

-5 0 5

-1

-0.5

0

0.5

1

x

sin

>> ezplot(@sin); % pass by function handle
>> ezplot('sin'); % older method
>> ezplot('sin(x)');

>> f = @(x) sin(cos(x.^2));
>> ezplot(f); % equivalent
>> ezplot(@(x) sin(cos(x.^2))); % methods
>> ezplot(@(x) sin(cos(x^2)));
>> ezplot('sin(cos(x^2))');

Solution of the Van der Waals equation using fzero

P = 220; n = 2; % values are from
a = 5.536; b = 0.03049; % Problem 2.7
R = 0.08314472; T = 1000;

V0 = n*R*T/P; % ideal-gas case, V0=0.7559

f = @(V) (P + n^2*a./V.^2).*(V-n*b) - n*R*T;

V = fzero(f, V0)

V =
0.6825

seek a solution of
f(V) = 0, near V0

passing to fzero a function that has additional parameters

f = @(x,a,b) ... % define f(x,a,b) here,
% or, in a separate M-file

% find the solution of f(x,a,b)=0

x = fzero(@(x) f(x,a,b), x0);

effectively defines a new anonymous
function and passes its handle to fzero

>> doc fzero same method can be
used for fminbnd

Example:

P = 220; n = 2; % values are from
a = 5.536; b = 0.03049; % Problem 2.7
R = 0.08314472; T = 1000;

V0 = n*R*T/P; % ideal-gas case, V0=0.7559

f=@(V,a,b) (P + n^2*a./V.^2).*(V-n*b) - n*R*T;

V = fzero(@(V) f(V,a,b), V0)

V =
0.6825 effectively defines a new anonymous

function and passes its handle to fzero

sinc functions appear in many engineering applications:

1. Fourier analysis of signals
2. Optical systems (resolving power of microscopes, telescopes)
3. Radar systems
4. DSP applications and digital communications
5. Antenna arrays, sonar and seismic arrays
6. Playback systems of CD and MP3 players (known as sinc

interpolation filters or oversampling digital filters)
7. And many others

math
definition

MATLAB
definition

-4 -2 0 2 4
-0.5

0

0.5

1
sinc(x) = sin(π x) / (π x)

x

x0 = 0.443

3-dB width
 = 2x0 = 0.886

3-dB drop

fplot(@sinc, [-4,4], 'b-'); hold on;
f = @(x) sinc(x)-1/sqrt(2);
x0 = fzero(f,0.5); % x0 = 0.443
plot([-x0,x0],[1,1]/sqrt(2),'r-');

x0 is the solution
of the equation:

or,

3-dB width of the sinc function

Multi-Input Multi-Output Functions

In general, a function can accept several variables as input
arguments and produce several variables as outputs.

The input arguments are separated by commas, and the
output variables are listed within brackets, and can have
different sizes and types:

[out1, out2, ...] = funct(in1, in2,...)

The number of input and output variables are counted by the
reserved variables: nargin, nargout

Functions can also have a variable number of inputs and
outputs controlled by: varargin, varargout

The equations of motion are:

The function trajectory
should have the following
possible ways of calling it:

Example: calculate the x,y coordinates and x,y velocities vx,vy
of a projectile, at a vector of times t, launched from height h0
with initial velocity v0, at angle θ0 (in degrees) from the
horizontal, under vertical acceleration of gravity g:

[x,y,vx,vy] = trajectory(t,v0,th0,h0,g);

[x,y,vx,vy] = trajectory(t,v0);
[x,y,vx,vy] = trajectory(t,v0,th0);
[x,y,vx,vy] = trajectory(t,v0,th0,h0);
[x,y,vx,vy] = trajectory(t,v0,th0,h0,g);

x = trajectory(t,v0,th0,h0,g);
[x,y] = trajectory(t,v0,th0,h0,g);

[x,y,vx] = trajectory(t,v0,th0,h0,g);

where, if omitted, the default input values should be:

th0 = 90; % vertical launch, degrees
h0 = 0; % ground level
g = 9.81; % m/sec^2

and only the listed output variables are returned.

0 10 20 30
0

2

4

6

8

10

12

x

y

θ
0

function [x,y,vx,vy] = trajectory(t,v0,th0,h0,g)

if nargin<=4, g = 9.81; end % default values
if nargin<=3, h0 = 0; end
if nargin==2, th0 = 90; end

th0 = th0 * pi/180; % convert to radians

x = v0 * cos(th0) * t;
y = h0 + v0 * sin(th0) * t - 1/2 * g * t.^2;
vx = v0 * cos(th0);
vy = v0 * sin(th0) - g * t;

t = linspace(0,2,201);
v0 = 20; th0 = 45;
[x,y]=trajectory(t,v0,th0);
plot(x,y, 'b');
xlabel('x'); ylabel('y');

Subfunctions and Nested Functions

A function can include, at its end, the definitions of other
functions, referred to as subfunctions.

The subfunctions can appear in any order and each can be
called by any of the other ones within the primary function.

Each subfunction has its own workspace variables that are not
shared by the other subfunctions or the primary one, i.e., it
communicates only through its output variables.

Nested functions share their workspace variables with those of
the primary function. They must end with the keyword end.

% alternative version of rms.m

function [r,m] = rms(x)
r = rmsq(x); % root-mean-square
m = mav(x); % mean absolute value

function y = rmsq(x)
y = sqrt(sum(abs(x).^2) / length(x));

function y = mav(x)
y = sum(abs(x)) / length(x);

the appearance of the keyword function
signals the beginning of each subfunction

Example:

% nested version of rms.m

function [r,m] = rms(x)
N = length(x);
r = rmsq(x); % root-mean-square
m = mav(x); % mean absolute value

function y = rmsq(x)
y = sqrt(sum(abs(x).^2)/N);

end % end of rmsq

function y = mav(x)
y = sum(abs(x))/N;

end % end of mav

end % end of rms

Example:

N is known to the
nested subfunctions

function set1

problem1
problem2
problem3

function problem1
...

function problem2
...

function problem3
...

function other1
...

function other2
...

function other3
...

primary function

execute problem subfunctions
to get the homework results

define the subfunctions
implementing each problem
define the problem subfunctions
implementing each problem

define any other subfunctions
that may be called by the
problem subfunctions

Example: structure of your homework reports

Summary of Function Types

- Primary functions

- Anonymous functions

- Subfunctions

- Nested functions

- Private functions

- Overloaded functions

- Recursive functions

Recursive Functions

Recursive functions call themselves

i.e., they define themselves by calling themselves

Not quite as circular as it sounds
(e.g., a tall person is one who is tall)

Interesting and elegant programming concept,
but tends to be very slow in execution (it exists in other
languages like C/C++ and Java)

Nicely suited for repetitive tasks, like generating fractals

Example 1: Fibonacci numbers, f(n) = f(n-1) + f(n-2)

function y = fib(n,c)

if n==1, y = c(1); end
if n==2, y = c(2); end

if n>=3,
y = fib(n-1,c) + fib(n-2,c);

end

y = []; c = [0,1];
for n=1:10,

y = [y, fib(n,c)];
end

y =
0 1 1 2 3 5 8 13 21 34

initial values:

f(1) = c(1);
f(2) = c(2);

c = [c(1),c(2)];

Example 2: Binomial Coefficients, nchoosek(n,k)

function C = bincoeff(n,k)

if (k==0)|(k==n), % assumes n>=0, k>=0
C = 1;

elseif k>n,
C = 0;

else
C = bincoeff(n-1,k) + bincoeff(n-1,k-1);

end

for n=0:6,
C=[];
for k=0:n,

C = [C, bincoeff(n,k)];
end
disp(C);

end

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Pascal triangle

Example 3: Sierpinsky Carpet

level = 0 level = 1

level = 2 level = 3

level=2;

a=[0,0]; b=[1,0]; c=[1,1]; d=[0,1];

carpet(a,b,c,d,level);

axis equal; axis off; hold off;

a b

d c

function carpet(a,b,c,d,level)

p = (2*a+b)/3; q = (a+2*b)/3;
r = (2*b+c)/3; s = (b+2*c)/3;
t = (d+2*c)/3; u = (2*d+c)/3;
v = (2*d+a)/3; w = (d+2*a)/3;

e = (2*w+r)/3; f = (w + 2*r)/3;
g = (2*s+v)/3; h = (s + 2*v)/3;

if level==0,
fill([a(1),b(1),c(1),d(1)], [a(2),b(2),c(2),d(2)], 'm');
hold on;

else
carpet(a,p,e,w, level-1); % recursive calls
carpet(p,q,f,e, level-1);
carpet(q,b,r,f, level-1);
carpet(f,r,s,g, level-1);
carpet(g,s,c,t, level-1);
carpet(h,g,t,u, level-1);
carpet(v,h,u,d, level-1);
carpet(w,e,h,v, level-1);

end

a b

d c

w r

v s

p q

u t

e f

gh

Example 4:
Sierpinsky Gasket

0
1 2

3 4 5

a b

c

w v

u

u = (a+b)/2;
v = (b+c)/2;
w = (c+a)/2;

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

