Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department, Rm ELE-230
orfanidi@ece.rutgers.edu

week 5

—— | Week

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)

Week 4 - Plotting — 2D and 3D plots (ch. 5)

5 - User-defined functions (ch. 6)

Week 6 - Input-output formatting — fprintf, sprintf (ch. 7)

Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)

Week 9 - Structures & cell arrays (ch. 10)

Week 10 - Symbolic math (ch. 11)

Week 11 - Numerical methods — data fitting (ch. 12)

Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

User-Defined Functions

M-files, script files, function files
anonymous & inline functions
function handles

function functions, fzero, fminbnd
multiple inputs & outputs
subfunctions, nested functions
homework template function

function types

recursive functions, fractals

M-files: script or function files

Script M-files contain commands to be executed as
though they were typed into the command window, I.e.,
they collect many commands together into a single file.

Function M-files must start with a function definition

line, and may accept input variables and/or return output
variables.

The function definition line has syntax:
function Joutputs] = func(inputs)

where the function name, func, Is arbitrary and must
match the name of the M-file, i.e., func.m

Example:

% File rms.m calculates the
% root-mean-square (RMS) value and the
% mean-absolute value of a vector Xx:

function [r,m] = rms(x)

r = sgrt(sum(abs(x).”2) 7/ length(x));
m = sum(abs(x)) /7 length(x);
>> X = -4:4, >> r = rms(X)
>> [r,m] = rms(x) r =
r = 2.5820
2.5820 T
m =
5 9999 rgturns only the
first output

Variables defined in a script file are known to the whole
current workspace, outside the script file.

Script files may not have any function definitions in them,
unless the functions are defined as inline or anonymous one-
line functions, e.g., using the function-handle @(x).

Variables in a function M-file are local to that function and
are not recognized outside the function (unless they are
declared as global variables, which is usually not
recommended.)

Function files may include the definition of other functions,
either as sub-functions, or as nested functions. This helps to

collect together all relevant functions into a single file (e.g.,
this 1s how you will be structuring your homework reports.)

Make up your own functions using three methods:

1. anonymous, with function-handle, @(x)
2. inline
3. M-file

example 1: £ (x)= e >Xsin(5x)

>> F = @(X) exp(-0.5*x).*sin(5*x);

>> g = inline("exp(-0.5*x) .*sin(5*x)");

% edit & save file h.m containing the lines:
function y = h(x)

y = exp(-0.5*x) .*sin(5*x);
T

.* allows vector or matrix inputs x

How to include parameters in functions

example 2. f(x) = e~ ** sin(bx)

%
a
f
%

f

%
%
%

method 1: define a,b First, then define f

0.5; b = 5;
@(x) exp(-a*x).*sin(b*x);

method 2: pass parameters as arguments to T
= 0(x,a,b) exp(-a*x).*sin(b*x);

this defines the function f(x,a,b)
so that f(x, 0.5, 5) would be equirvalent to
the f(x) defined 1n method 1.

example 3: test the convergence of the following
series for m,

“zzx}inooz‘/_z 2k+1 3k

= @(N) 2*sgrt(3) * cumsum(...
(-1).MO:N).Z/(2*(0:N)+1)./3.M(0:N));

% edit & save file f.m containing the lines:
function y = T(N)

k=0:N;

y = 2*sgrt(3)*cumsum((-1).~k./7(2*k+1)./3.7k);

convergence results:

N T(N) or g(N) digit accuracy
5 3.141 3

10 3.14159 5

15 3.14159265 8

20 3.1415926535 10

25 3.1415926535897 13

Inf 3.1415926535897. ..

Note: the functions f(N) and g(N) give equivalent results,

g(N) is a one-line definition, but much harder to read,

f(N) Is easy to read, but requires its own M-file, here, f.m

example 4. Fourier series approximation of the function,

keep only the k=0:4 terms,
define the function F(x),
and compute and plot both
f(x) and F(x)

+1, O<zxz<m
0, x =0
-1, 7 <x<0
ism((% 1)z)
P—. 2k + 1
4 osin((2k + 1))
Ple)= 2 2k + 1

>> F = Q(xX) sign(x) .* (abs(xX)<=pi); «

@(x) 4/p1*(sin(x) + sin(3*x)/3 + ...
sin(5*x)/5 + siIn(7*x)/7 + sin(9*x)/9);

>> F

>> x = linspace(-pi,pi,501);
>> plot(X/pi,F(X),"b-", X/pi,F(X),"r--");
>> xlabel ("x/\pi~);

1.5
Note: when X is a vector,

1 the logical statement
0.57 i | (abs(x)<=p1)

0 I results in a vector of Os or 1s,
-0.5 _ _

.‘ o see the section on relational

IRV AR S e 1 and logical operators
-1.5 | | |

-1 -0.5 0 0.5 1

x/

example 5. Anonymous functions with multiple arguments

T =0,y (X-7"2 +y."2) .* exp(-(X."2 + y."2)/2);

X = linspace(-5,5,51);
= linspace(-5,5,51);

[X Y] = meshgrid(x,y); i I
= £ Y): S "o
surf(X,Y,2); N05-'"““ s y

colorbar; EW%M‘w“E

,:,f;'m:,,':," i

Anonymous functions can be nested

>> T = 0(X) X."2;
>> g = @(X) sin(cos(xX));
>> h = @(xX) g(f(x)); % i.e., sin(cos(x."2))

>> fplot(h,[-6,6],"b-");
>> xlabel ("x"); title("g(fF(x))");

g(f(x))

1

0.5¢ ﬂﬂ (\

0,

OﬁUUUU U

Function Handles

A function handle is a data type that allows the referencing
and evaluation of a function, as well as passing the function
as an input to other functions, e.g., to fplot, ezplot,
fzero, fminbnd, fminsearch.

In anonymous functions, e.g., ¥ = @(x) (expression)
the defined quantity ¥ is already a function handle.

For built-in, or user-defined functions in M-files, the function
handle is obtained by prepending the character @ in front of
the function name, e.g.,

T handle
T handle

@sin;
@my_function;

Function Functions >> help funfun

A number of MATLAB functions accept other functions as
arguments. Such functions cover the following categories:

1. Function optimization (min/maximization) , root finding, and
plotting, e.g., fplot, ezplot, fzero, fminbnd,
fminsearch.

2. Numerical integration (quadrature) , e.g., quad, and its variants.
3. Differential equation solvers, e.g., ode45, and others.

4. Initial value and boundary value problem solvers.

The function argument is passed either as a function handle

(new method), or, as a string of the function name (old method)

>>
>>
>>

>>
>>
>>
>>
>>

ezplot(@sin); % pass by function handle
ezplot("sin®); % older method
ezplot("sin(x)");

T = 0(X) sin(cos(x-"2));

ezplot(f); % equivalent
ezplot(@(x) sin(cos(x.-"2))); % methods

ezplot(@(x) sin(cos(x™2)));
ezplot("sin(cos(x™2))");

sin sin(cos(x?))

1,

Solution of the Van der Waals equation using fzero

na

f(V) = (P+W) (V —nb) —nRT =0

220; n = 2; % values are from
5.536; b = 0.03049; % Problem 2.7
0.08314472; T = 1000;

O Q0 T
11

VO = n*R*T/P; % m1deal-gas case, V0=0.7559

f=00) (P + n2*a./Vv."2).*(V-n*b) - n*R*T;
|
I
V = fzero(f, VO)
\
V = seek a solution of

0.6825 (V) = 0, nearVO

passing to Fzero a function that has additional parameters

f = 0(x,a,b) ... % define f(x,a,b) here,
% or, In a separate M-fTile

% find the solution of f(x,a,b)=0

x = Fzero(@(x) F(x,a,b), x0);

effectively defines a new anonymous
function and passes its handle to fzero

same method can be
ssed for Fminbnd

Example:

P = 220; n = 2; % values are from
a =5.536; b = 0.03049; % Problem 2.7
R = 0.08314472; T = 1000;

VO = n*R*T/P; % m1deal-gas case, V0=0.7559
=0(V,a,b) (P + n"2*a./Vv."2).*(V-n*b) - n*R*T;

V = fzero(@(V) f(V,a,b), VO)
| |

V =

0.6825 effectively defines a new anonymous
function and passes its handle to fzero

s1nc functions appear in many engineering applications:

SO Uk wWNE

Fourier analysis of signals

Optical systems (resolving power of microscopes, telescopes)
Radar systems

DSP applications and digital communications

. Antenna arrays, sonar and seismic arrays

Playback systems of CD and MP3 players (known as sinc
Interpolation filters or oversampling digital filters)

. And many others

sinc(z) = Sin:f:) , sinc(x) = Sinﬂ(-;m)

! !
math MATLAB
definition definition

3-dB width of the sinc function

fplot(@sinc, [-4,4], "b-"); hold on;
T = 0(X) sinc(xX)-1/sqgrt(2);

X0 = fzero(f,0.5);

% X0 = 0.443

plot([-x0,x0],[1,1]/sqrt(2),"r-");

X0 IS the solution
of the equation:

[sin(m)r 1

T

or,

1
sinc(z) = —
V2

10log,(1/2) = —3 dB

0.5

-0.5
-4

sinc(x) = sin(wt x) / (1 X)

3-dB width
\ = 2Xo = 0.886

Multi-Input Multi-Output Functions

In general, a function can accept several variables as input
arguments and produce several variables as outputs.

The Input arguments are separated by commas, and the
output variables are listed within brackets, and can have
different sizes and types:

[outl, out2, ...] = funct(inl, In2,...)

The number of input and output variables are counted by the
reserved variables: nargin, nargout

Functions can also have a variable number of inputs and
outputs controlled by: varargin, varargout

Example: calculate the X,y coordinates and x,y velocities vx,vy
of a projectile, at a vector of times t, launched from height ho
with initial velocity vo, at angle 60 (in degrees) from the
horizontal, under vertical acceleration of gravity g:

[X,Y,vX,vy] = trajectory(t,v0,th0,h0,q9);

The equations of motion are:

X =Vycos Ot

1
Yy = ho +VUS]'HQUIL—EQT2
The function trajectory

Vx = Vo cos 0 should have the following

_ possible ways of calling it:
Vy = Vy S]Ilgg — gt

[X,Y,vX,vy] = trajectory(t,v0);
[X,Y,vX,vy] = trajectory(t,v0,thO);
[X,Y,vX,vy] = trajectory(t,v0,th0,h0);
[X,Y,vX,vy] = trajectory(t,v0,th0,h0,q9);
X = trajectory(t,v0,th0,h0,qg);
[X,y] = trajectory(t,v0,th0O,h0,q9);
[X,Y,vx] = trajectory(t,v0,th0,h0,q9);

where, If omitted, the default input values should be:

thO = 90; % vertical launch, degrees
hO = O; % ground level
g = 9.81; % m/sec”"2

and only the listed output variables are returned.

function [X,y,vXx,vy] = trajectory(t,v0,th0,h0,Q)

iIf nargin<=4, g = 9.81; end % default values
iIf nargin<=3, hO = 0; end
iIf nargin==2, thO = 90; end

thO = thO * pi1/180; % convert to radians
X = vO0 * cos(thO) * t;
y = h0O + vO * sin(th0) * t - 1/2 * g * t."2;
v = vO * cos(th0);
vy = vO * sin(th0) - g * t;
12
t = linspace(0,2,201); 10/

vO = 20; thO = 45;
[X,y]=trajectory(t,v0,th0); -
plot(x,y, "b");

xlabel ("x"); ylabel("y");

SR P @

10 20

Subfunctions and Nested Functions

A function can include, at its end, the definitions of other
functions, referred to as subfunctions.

The subfunctions can appear in any order and each can be
called by any of the other ones within the primary function.

Each subfunction has its own workspace variables that are not

shared by the other subfunctions or the primary one, I.e., it
communicates only through its output variables.

Nested functions share their workspace variables with those of
the primary function. They must end with the keyword end.

Example:

% alternative version of rms.m

function [r,m] = rms(x)
r rmsq(Xx) ; % root-mean-square
m mav(Xx) ; % mean absolute value

function y = rmsq(x)
y = sqrt(sum(abs(x).”2) /7 length(x));

function y = mav(x)
y = sum(abs(x)) /7 length(x);

the appearance of the keyword function
signals the beginning of each subfunction

Example:

% nested version of rms.m

N 1s known to the

function [r,m] = rms(X) _— acied subfunctions

N = length(x);

r = rmsq(x); % root-mean-square
m = mav(X); % mean absolute value

function y = rmsq(x)

y = sqrt(sum(abs(x).”2)/N);

end

function y = mav(x)
y = sum(abs(x))/N;
end

end

% end of rmsq

% end of mav

% end of rms

Example: structure of your homework reports

function setl

probleml
problem2
problem3

function probleml
function problem2

function problem3

function otherl
function other?2

function other3

primary function

execute problem subfunctions
to get the homework results

define the problem subfunctions

Implementing each problem

define any other subfunctions

that may be called by the
problem subfunctions

Summary of Function Types

- Primary functions

- Anonymous functions
- Subfunctions

- Nested functions

- Private functions

- Overloaded functions

- Recursive functions

Recursive Functions

Recursive functions call themselves
I.e., they define themselves by calling themselves

Not quite as circular as it sounds
(e.g., a tall person is one who is tall)

Interesting and elegant programming concept,
but tends to be very slow in execution (it exists in other
languages like C/C++ and Java)

Nicely suited for repetitive tasks, like generating fractals

Example 1. Fibonacci numbers, f(n) =f(n-1) + f(n-2)

Initial values:

f(1) = c(1);
f(2) = c(2);

¢ = [c(1).c(2)];

function y = fib(n,c)
iIf n==1, vy = c(1); end
iIf n==2, vy = c(2); end
1t n>=3,

y = fib(n-1,c) + fib(n-2,c);
end
y = 1: ¢ = [0.1];
for n=1:10,

y = Ly, fib(n,c)];
end
y:

O 1 1 2 3 S 8 13 21 34

Example 2: Binomial Coefficients, nchoosek(n, k)

function C = bincoeff(n,k)

1T (k==0)](k==n), % assumes n>=0, k>=0
C =1;

elseilt k>n,
C = 0;

else

C = bincoeff(n-1,k) + bincoeff(n-1,k-1);
end

-y R

for n=0:6,

C=[1:
for k=0:n,
C = [C, bincoeff(n,k)];
end
disp(C);
end
1
1 1 :
Pascal triangle
1 2 1
1 3 1
1 4 6 1
1 5 10 10 5
1 6 15 20 15

Example 3: Sierpinsky Carpet

=1

level

=0

level

=3

level

=2

level

level=2;
a=[0,0]; b=[1,0]; c=[1,1]; d=[0,1];
carpet(a,b,c,d, level);

axis equal; axis off; hold off;

d

function carpet(a,b,c,d, level)

p = (2*atb)/3; q = (a+2*b)/3;
r = (2*b+c)/3; s = (b+2*c)/3;
t = (d+2*¢c)/3; u = (2*d+c)/3;
v = (2*d+a)/3; w = (d+2*a)/3;
e = (2*w+r)/3; f = (w + 2*r)/3;
g = (2*s+v)/3; h = (s + 2*v)/3;
1T level==0,
fill([a(1),b(1),c(1),.d(D]. [a(2),b(2),c(2),d(2)], "m");
hold on;
else
carpet(a,p,e,w, level-1); % recursive calls
carpet(p,q,f,e, level-1);
carpet(q,b,r,f, level-1);
carpet(f,r,s,g, level-1);
carpet(g,s,c,t, level-1);
carpet(h,g,t,u, level-1);
carpet(v,h,u,d, level-1);
carpet(w,e,h,v, level-1);

end

Example 4:
Sierpinsky Gasket

Vi

\/
vvv
A/ \/
vVv vVv
Vi

£ A%

&v £h Ly

\/
vvv

(atb)/2;
(b+c)/2;
(ct+a)/2;

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

