
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 6

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output processing (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

Input – Output Processing

input and output functions,
saving and loading files and variables,
formatted screen output,
file input and output
opening, reading, writing, and saving files
fopen, fclose, frewind
fprintf, fscanf, fgetl, textscan
reading and writing excel files
reading, writing, playing audio files
image files

input, disp
save, load

fprintf, sprintf

MATLAB has a large number of file processing
functions for a variety of tasks:

1. file opening, loading, saving
2. text file processing
3. low-level file I/O
4. reading, writing spreadsheets
5. audio and video file processing
6. image & standard graphics files
7. specialized scientific data formats
8. file compression and internet file access
9. XML files

Useful I/O Functions:

input, disp, num2str

load, save

fprintf, sprintf

fopen, fclose, frewind, fread, fwrite

fscanf, textscan, fgetl, importdata

xlsread, xlswrite

sound, wavread, wavwrite, wavplay,
wavfinfo, wavrecord, audioplayer,
audiorecorder, auidodevinfo

imread, imwrite, image, imfinfo, im2java

zip, unzip, tar, untar, gzip, gunzip

>> help iofun
>> doc iofun

>> x = 10; disp('the value of x is:'); disp(x);
the value of x is:

10

>> x = input('enter x: ') % numerical input
enter x: 100 % 100 entered by user
x =

100

>> y = input('enter string: ', 's'); % string input
enter string: abcd efg
>> y = input('enter string: ')
enter string: 'abcd efg'
y =
abcd efg

input/output functions: disp, input

prompt string in single quotes

string entered with no quotes
string entered in quotes

>> doc disp
>> doc input

prompt = 'enter a 2x2 matrix A = ';
A = input(prompt)
enter a 2x2 matrix A = [1 2; 3 4]
A =

1 2
3 4

N=3; M=2;
prompt = ['enter a', ...
num2str(N),'x',num2str(M),' matrix A = '];
A = input(prompt)
enter a 3x2 matrix A = [1 2; 3 4; 5 6]
A =

1 2
3 4
5 6

brackets are required

>> doc num2str
>> doc int2str

using num2str

saving & loading variables: save, load

>> doc save
>> doc load

Y = [1 2 3 4; 5 6 7 8];

save('test.dat', 'Y', '-ascii'); % text file
save test.dat Y –ascii; % equivalent

save test.dat Y; % binary file test.dat
save Y; % creates binary file Y.mat

>> type test.dat

1.0000000e+000 2.0000000e+000 3.0000000e+000 4.0000000e+000
5.0000000e+000 6.0000000e+000 7.0000000e+000 8.0000000e+000

X = load('test.dat') % read contents into X
X =

1 2 3 4
5 6 7 8

load test.dat % creates new variable 'test'
test =

1 2 3 4
5 6 7 8

saving & loading variables: save, load

the file being loaded must be in the current working
directory, or in MATLAB’s path (set/add path from
File > Set Path in MATLAB desktop)

fprintf('format_specs', variables);

screen output with fprintf, sprintf

print format
specifications

list of variables,
arrays, or matrices
to be printed

s = sprintf('format_specs', variables);

print format
specifications

list of variables,
arrays, or matrices
to be printed

string
output

>> doc fprintf
>> doc sprintf

>> fprintf('%10.6f\n', 100*pi)
>> fprintf('% 10.6f\n', 100*pi)
>> fprintf('%-10.6f\n', 100*pi)
>> fprintf('%+10.6f\n', 100*pi)
>> fprintf('%10.0f\n', 100*pi)
>> fprintf('%#10.0f\n', 100*pi)
>> fprintf('%010.0f\n', 100*pi)

314.159265
314.159265
314.159265
+314.159265

314
314.

0000000314

%10.6f % width 10, 6 decimal places
% 10.6f % leave space before field
%-10.6f % left-justify field
%+10.6f % print + or – signs
%10.0f % no decimals
%#10.0f % print decimal point
%010.0f % pad with zeros

flag conversion character:
d, i integer format
f fixed-point format
e, E, g exponential format
c, s character or string
x hexadecimal format

field width
& precision

there must be as many format specifiers
as variables to be printed on each line

>> x = 5;
>> fprintf('x = %3.2f x^2 = %3.2f\n', x, x^2);

x = 5.00, x^2 = 25.00

>> x = [5 10 15];
>> fprintf('x = %5.2f, x^2 = %6.2f\n',[x; x.^2]);

x = 5.00, x^2 = 25.00
x = 10.00, x^2 = 100.00
x = 15.00, x^2 = 225.00

increase field width to align
decimal points

printed one column at a time

>> [x; x.^2]

ans =
5 10 15

25 100 225

printed column-wise

>> x = [5; 10; 15];
>> fprintf('x = %5.2f, x^2 = %6.2f\n',[x, x.^2]');

x = 5.00, x^2 = 25.00
x = 10.00, x^2 = 100.00
x = 15.00, x^2 = 225.00

>> [x; x.^2]'

ans =
5 10 15
25 100 225

>> [x,x.^2]

ans =
5 25
10 100
15 225

a = [1; -2; 3; 4;];
b = [10; 20; -30; 40];
c = [100; 200; 300; -400];

fprintf('%9.3f %9.3f %9.3f\n', [a, b, c]');

1.000 10.000 100.000
-2.000 20.000 200.000
3.000 -30.000 300.000
4.000 40.000 -400.000

for i=1:4,
fprintf('%9.3f %9.3f %9.3f\n', a(i),b(i),c(i));

end

vectorized version

loop version

>> [a, b, c]

ans =
1 10 100
-2 20 200
3 -30 300
4 40 -400

need at least %6.3f
to align first column

>> x = [5 10 15];
>> s = sprintf('x=%5.2f, x^2=%6.2f\n',[x; x.^2])

s =

x= 5.00, x^2= 25.00
x=10.00, x^2= 100.00
x=15.00, x^2= 225.00

>> x = 5;
>> s = sprintf('x = %3.2f x^2 = %3.2f\n', x, x^2)

s =

x = 5.00, x^2 = 25.00

sprintf examples

sprintf is useful for
producing labels and
titles in plots

File input and output – reading and writing files with
fopen, fclose, frewind,
fscanf, textscan, fgetl, fprintf

fid = fopen(filename);
fid = fopen(filename, permissions)

entered as a string, or
a pathname e.g.,

'myfile.dat'

opening mode:

'r' read, or create new
'w' write, discard old
'a' write, append to old
'w+' read or write, discard
'a+' read or write, append

file ID – file pointer used to refer to the file during processing

fclose(fid);
fclose('all');

fid = fopen(filename,'w');
fprintf(fid, 'format_specs', variables);
fclose(fid);

writing into file with fprintf

x = [5 10 15];
fp = fopen('test.dat','w');
fprintf(fp, 'x = %5.2f, x^2 = %6.2f\n',[x; x.^2]);
fclose(fp);

the file test.dat now contains the lines:

x = 5.00, x^2 = 25.00
x = 10.00, x^2 = 100.00
x = 15.00, x^2 = 225.00

fid = fopen(filename,'r');
A = fscanf(fid, 'format_specs');
fclose(fid);

reading data from text file with fscanf

>> fp = fopen('test.dat','r');
>> A = fscanf(fp, 'x = %f, x^2 = %f\n')
>> fclose(fp);

A =
5
25
10
100
15
225

>> reshape(A,2,3)
ans =

5 10 15
25 100 225

1st line in file

2nd line

3d line

A is returned as a column vector

alternative methods of using fscanf

fp = fopen('test.dat','r');
A = fscanf(fp, 'x = %f, x^2 = %f\n', [2,inf])
fclose(fp);

A =
5 10 15
25 100 225

fp = fopen('test.dat','r');
A = fscanf(fp,'%*s %*s %f %*s %*s %*s %f',[2,inf])
fclose(fp);

skip over %*s fields, read only %f

read 2 rows, and indeterminate
number of columns

spaces are optional

reading data from text file with textscan

fp = fopen('test.dat','r');
A = textscan(fp, '%*s %*s %f %*s %*s %*s %f')

skip over %*s fields, read only %f,
returned in numerical cell arrays

frewind(fp);
B = textscan(fp, '%s %s %f %s %s %s %f')
fclose(fp);

return all %s fields in cell arrays of strings
and the %f fields in numerical cell arrays

A more complex example: read a file of student
names and grades, sort them, save them in a sorted file,
re-calculate grades with new weights, sort them, and save
them in another file

The file grades1.dat contains the following lines:

Name E1 E2 E2 AVE G

Apple,A. 85 87 90 87.60 B+
Exxon,E. 20 58 65 49.40 F
Facebook,F. 68 45 92 70.70 C+
Google,G. 83 54 93 78.30 B
Ibm,I. 85 100 90 91.50 A
Microsoft,M. 55 47 59 54.20 D
Twitter,T. 70 65 72 69.30 C

The first two header lines can be skipped over with the
help of the fgetl (get line) command. For the rest of the
file, the first & last columns are strings of unequal length
and will be extracted with textscan into cell arrays, the
numerical columns will be extracted with fscanf, and
saved in a 7x4 matrix for further processing.

Name E1 E2 E2 AVE G

Apple,A. 85 87 90 87.60 B+
Exxon,E. 20 58 65 49.40 F
Facebook,F. 68 45 92 70.70 C+
Google,G. 83 54 93 78.30 B
Ibm,I. 85 100 90 91.50 A
Microsoft,M. 55 47 59 54.20 D
Twitter,T. 70 65 72 69.30 C

fclose('all'); % close any open files

fp = fopen('grades1.dat'); % open data file

fgetl(fp); fgetl(fp); % skip two header lines

A = fscanf(fp,'%*s %f %f %f %f %*s');
% read only the %f columns of numbers
% skipping over the %*s fields
% A is returned as a column vector, in which
% every four numbers come from a row of data

A = reshape(A,4,7)';
% reshape A into same shape as the data file
% note the transposition operation

frewind(fp);
% rewind file to its beginning without closing

A =
85.00
87.00
90.00
87.60
...
70.00
65.00
72.00
69.30

reshape(A,4,7)
ans =

85.00 20.00 68.00 83.00 85.00 55.00 70.00
87.00 58.00 45.00 54.00 100.00 47.00 65.00
90.00 65.00 92.00 93.00 90.00 59.00 72.00
87.60 49.40 70.70 78.30 91.50 54.20 69.30

A = reshape(A,4,7)'
85.00 87.00 90.00 87.60
20.00 58.00 65.00 49.40
68.00 45.00 92.00 70.70
83.00 54.00 93.00 78.30
85.00 100.00 90.00 91.50
55.00 47.00 59.00 54.20
70.00 65.00 72.00 69.30

fgetl(fp); fgetl(fp); % skip header lines

C = textscan(fp,'%s %*f %*f %*f %*f %s');
% read text %s strings ignoring %f data
% C is 7x2 cell array of strings

N = C{:,1}; G = C{:,2};
% cell arrays of names and letter grades

fclose(fp); % close file grades1.dat

A =
85.00 87.00 90.00 87.60
20.00 58.00 65.00 49.40
68.00 45.00 92.00 70.70
83.00 54.00 93.00 78.30
85.00 100.00 90.00 91.50
55.00 47.00 59.00 54.20
70.00 65.00 72.00 69.30

[av,i] = sort(A(:,4),'descend');
% sort by AVE in descending order
% i = sorting order

As = A(i,:); % sort A, N, G according to i
Ns = N(i); % N(i) defines new cell array
Gs = G(i); % N{i} represents the contents

>> N

ans =
'Apple,A.'
'Exxon,E.'
'Facebook,F.'
'Google,G.'
'Ibm,I.'
'Microsoft,M.'
'Twitter,T.'

>> G

ans =
'B+'
'F'
'C+'
'B'
'A'
'D'
'C'

fp = fopen('grades2.dat','w');
% create new file for sorted grades

fprintf(fp,' Name E1 E2 E2 AVE G\n');
fprintf(fp,'---------------------------------\n');

for i=1:length(G),
fprintf(fp, '%-12s %3.0f %3.0f %3.0f %3.2f %-3s\n',...

Ns{i}, As(i,:), Gs{i});
end

fclose(fp); % close sorted file

i-th row
needs four
%f fields

i-th entry of cell arraycell
array

>> type grades2.dat

Name E1 E2 E2 AVE G

Ibm,I. 85 100 90 91.50 A
Apple,A. 85 87 90 87.60 B+
Google,G. 83 54 93 78.30 B
Facebook,F. 68 45 92 70.70 C+
Twitter,T. 70 65 72 69.30 C
Microsoft,M. 55 47 59 54.20 D
Exxon,E. 20 58 65 49.40 F

>> type grades1.dat

Name E1 E2 E2 AVE G

Apple,A. 85 87 90 87.60 B+
Exxon,E. 20 58 65 49.40 F
Facebook,F. 68 45 92 70.70 C+
Google,G. 83 54 93 78.30 B
Ibm,I. 85 100 90 91.50 A
Microsoft,M. 55 47 59 54.20 D
Twitter,T. 70 65 72 69.30 C

i =

5
1
4
3
7
6
2

sorting order

w = [1; 1; 1]/3; % define new weights
AV2 = A(:,1:3)*w; % compute new weighted average

[AV2, i] = sort(AV2, 'descend'); % sort them

As = A(i,:); Ns = N(i); Gs = G(i); % sorted grades

fp = fopen('grades3.dat','w'); % open new file

fprintf(fp,' Name E1 E2 E2 AVE G AV2 G2\n');
fprintf(fp,'----------------------------------\n');

for i=1:length(G),
G2 = grade(AV2(i)); % map to letter grade
fprintf(fp, '%-12s %3.0f %3.0f %3.0f %3.2f ...

%-3s %3.2f %-3s\n', Ns{i},As(i,:),Gs{i},AV2(i),G2);
end

fclose(fp);

matrix-vector multiplication

function G = grade(g) % letter grade

if g >= 90,
G = 'A ';

elseif g >= 85,
G = 'B+';

elseif g >= 75,
G = 'B ';

elseif g >= 70,
G = 'C+';

elseif g >= 60,
G = 'C ';

elseif g >= 50,
G = 'D ';

else
G = 'F ';

end

M-file, grade.m

>> type grades3.dat

Name E1 E2 E2 AVE G AV2 G2
--
Ibm,I. 85 100 90 91.50 A 91.67 A
Apple,A. 85 87 90 87.60 B+ 87.33 B+
Google,G. 83 54 93 78.30 B 76.67 B
Twitter,T. 70 65 72 69.30 C 69.00 C
Facebook,F. 68 45 92 70.70 C+ 68.33 C
Microsoft,M. 55 47 59 54.20 D 53.67 D
Exxon,E. 20 58 65 49.40 F 47.67 F

The zip file grades1.zip contains the complete source code

reading & writing excel files, xlsread, xlswrite

>> [A,C] = xlsread('grades1.xls')

A =

85.0000 87.0000 90.0000 87.6000
20.0000 58.0000 65.0000 49.4000
70.0000 65.0000 72.0000 70.7000
83.0000 54.0000 93.0000 78.3000
85.0000 100.0000 90.0000 91.5000
55.0000 47.0000 59.0000 54.2000
68.0000 45.0000 92.0000 69.3000

numerical text
cells

C =

'Names' 'E1' 'E2' 'E3' 'Av' 'G'
'Apple, A.' '' '' '' '' 'B+'
'Exxon, E' '' '' '' '' 'F '
'Facebook, F.' '' '' '' '' 'C '
'Google, G' '' '' '' '' 'B '
'Ibm, I.' '' '' '' '' 'A '
'Microsoft, M.' '' '' '' '' 'D '
'Twitter, T.' '' '' '' '' 'C+'

>> xlswrite('grades2.xls',A);

A = imread(filename, fmt);
[A, map] = imread(filename, fmt);

imwrite(A,filename,fmt);

imfinfo(filename);

fmt: 'jpg', 'jp2', 'png', 'tiff', 'png',
'gif', 'bmp', and other

Image Files

these functions have additional input/output options

NGC 6543 Nebula

y = imread('ngc6543a.jpg', 'jpg');

image(y);

title('NGC 6543 Nebula'); axis off;

100 200 300 400 500

100

200

300

400

load mandrill; % MATLAB demo image
image(X); % X,map are part of the
colormap(map); % saved mandrill.mat file

s1 = 'http://upload.wikimedia.org/';
s2 = 'wikipedia/commons/d/de/';
s3 = 'St_Louis_night_expblend.jpg';
filename = [s1,s2,s3];

y = imread(filename,'jpg');
image(y); axis off;

'http://upload.wikimedia.org/wikipedia/commons/d/de/St_Louis_night_expblend.jpg'

[y,fs] = wavread(filename);

wavwrite(y,fs,filename);

y = wavrecord(n,fs); % n samples
y = wavrecord(N*fs,fs); % N seconds

sound(y,fs);
wavplay(y,fs);

% typical, fs = 8000, 11025, 22050, 44100

Reading, Writing, Recording, Playing Audio Files

these functions have additional input/output options,
see week-2 lecture notes for some examples

• reads & plays a wave file

• scrambles it by frequency inversion implemented by
lowpass filtering and AM modulation

• plays the scrambled version

• unscrambles it & plays it back

Voice Scrambler Example

x n() y n()y n1() y n2()

s n()
lowpass

filter
lowpass

filter

carrier f0

fs /2

f

lowpass
filter carrier

frequency

shifted
spectrum

inverted
spectrum

X f()

X f f()+ 0 X f f()− 0

f

f

f0−f0 0

f0−f0 0

f0−f0 0

fs /2

fs /2

Y f()

Voice Scrambler

% scrambler.m - scrambler example

clear all

fs = 16000; f0 = 3300; w0 = 2*pi*f0/fs; % filter's cutoff
M = 100; n = 0:M; % filter order M=100
w = 0.54 - 0.46*cos(2*pi*n/M); % Hamming window
h = w .* sinc(w0/pi*(n-M/2)) * w0/pi; % design filter

[x,fs] = wavread('JB.wav'); % read wave file
sound(x,fs); % here, fs=16000

t = (0:length(x)-1)'; % here, length(x)=71472
s = 2*cos(w0*t); % sinusoidal carrier

y = filter(h,1,x) .* s; % scramble by AM modulation
y = filter(h,1,y); % and lowpass filtering

pause; sound(y,fs); % play scrambled file

y = filter(h,1,y) .* s; % unscramble
y = filter(h,1,y);

pause; sound(y,fs); % play unscrambled file

Record and scramble/unscramble your own voice

fs = 16000;

y = wavrecord(5*fs, fs);

wavwrite(y,fs,'test.wav');

Connect a mike at the microphone input of your PC,
execute the following MATLAB commands to
record your voice for 5 seconds at a sampling
rate of 16000 samples/sec, and save the recording
in a wavefile 'test.wav', then edit the program
scrambler.m to read this wave file, and run it.

5*fs = number of samples in 5 sec

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

