Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department
orfanidi@ece.rutgers.edu

week 6

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting — 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
— | Week 6 - Input-output processing (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)
Week 9 - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods — data fitting (ch. 12)
Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

Input — Output Processing

Input and output functions, Tnput, disp

saving and loading files and variables, save, load
formatted screen output, fprintf, sprintf

file input and output

opening, reading, writing, and saving files

fopen, fclose, frewind

fprintf, fscanf, fgetl, textscan

reading and writing excel files

reading, writing, playing audio files

Image files

MATLAB has a large number of file processing
functions for a variety of tasks:

file opening, loading, saving

text file processing

low-level file 1/0

reading, writing spreadsheets

audio and video file processing

Image & standard graphics files
specialized scientific data formats

file compression and internet file access
XML files

1.
2.
3.
4.
D.
0.
1.
8.
9.

Useful I/O Functions:

>> help 1ofun

input, disp, num2str >> doc 10ofun
load, save

fprintf, sprintf

fopen, fclose, frewind, fread, fwrite
fscanf, textscan, fgetl, 1mportdata
xIsread, xlswrite

sound, wavread, wavwrite, wavplay,
wavfinfo, wavrecord, audioplayer,
audiorecorder, auirdodevinfo

imread, imwrite, Image, imfinfo, Im2java

zip, unzip, tar, untar, gzip, gunzip

Input/output functions: disp, 1nhput

>> x = 10; disp("the value of x 1s:7); disp(X);
the value of x 1s:

10
>> X = 1hput("enter x: °) % numerical 1nput
enter x: 100 \\\ % 100 entered by user
X = SN

100 prompt string in single quotes

/ w

>> y = 1nput("enter string: ", "s"); % string input

enter string: abcd efg D

>> y = 1nput("enter string: ")

enter string: "abcd efg-” string entered with no quotes
y = T string entered in quotes
abcd efg

>> doc disp
>> doc I1nput

prompt = “"enter a 2x2 matrix A = °;
A = 1nput(prompt)

enter a 2x2 matrix A = [1 2; 3 4]
A = ! I
brackets are required

1 2
3 4

N=3; M=2; using num2str

prompt = ["enter a", ...
num2str(N), "x" ,num2str(M), " matrix A = "];
A = 1nput(prompt)

enter a 3x2 matrix A = [1 2; 3 4; 5 6]

A =

>> doc num2str

1 2
3 4 >> doc 1nt2str
5 6

saving & loading variables: save, load

Y =[1234:56 7 8];

save("test.dat", "Y", "-ascii1"); % text file

save test.dat Y —asclili; % equivalent
save test.dat Y; % binary file test.dat
save Y; % creates binary file Y._mat

>> type test.dat

1.0000000e+000 2.0000000e+000 3.0000000e+000 4.0000000e+000
5.0000000e+000 6.0000000e+000 7.0000000e+000 8.0000000e+000

>> doc save

>> doc load

saving & loading variables: save, load

X load("test.dat”) % read contents into X
X

1 2 3 4
S 6 7 8

load test.dat % creates new variable "test”
Test

o1~ I

2 3 4
6 ! 8

the file being loaded must be in the current working
directory, or in MATLAB?’s path (set/add path from
File > Set Path in MATLAB desktop)

screen output with fprintf, sprintf

fprintf (" format _specs®, variables);

f
print format
specifications

T

list of variables,
arrays, or matrices
to be printed

s = sprintf("format_specs”, variables);
t t t
string print format list of variables,
output specifications arrays, or matrices

>> doc fprintf
>> doc sprintf

to be printed

I
>> fprintf("%10.6F\n",

>> fprintf("% 10.6F\n",
>> fprintf("%-10.6F\n",
>> fprintf("%+10.6F\n",
>> fprintf("%10.0F\n",
>> fprintf("%#10.0F\n",
>> fprintf("%010.0F\n",

314.159265
314.159265

314.159265
+314.159265

314

314.

0000000314

100%*
100%*
100%*

0l)
0l)

0l)

100*p1)
100*p1)
100*p1)
100*p1)

%10.6F
% 10.6T
%-10.6T
%+10.6T
%10.0F
%#10.0T

%010.0F
Sl

flag

% width 10, 6 decimal places
% leave space before field

% left-justity field

% print + or — siIgns

% no decimals

% print decimal point

% pad with zeros

o

field width
& precision

conversion character:

d, 1 Integer format
fixed-point format
, E, g exponential format
S character or string
hexadecimal format

X O (D =h

there must be as many format specifiers
as variables to be printed on each line

>> X = 5;
>> fprintf("x = %3.2F x*2 = %3.2f\n", X, X"2);

25.00

X = 5.00, x"2

printed one column at a time

>> x = [5 10 15]; |
>> fprintf("x = %5.2F, x2 = %6.2A\n",[x; x-2]);

X = 5.00, x»2 = 25.00
X = 10.00, x~2 = 100.00 >> [x; x.72]
x = 15.00, x”"2 = 225.00 ans =
T T By 710, /15
increase field width to align 25/ 1100, 225/

decimal points

>> x = [5; 10; 15];
>> fprintf("x = %5.2F, x*2 = %6.2A\n",[x, x.-~2]");

1

X = 5.00, x*2 = 25.00 . ;
X = 10.00, x~2 = 100.00 printed column-wise
x = 15.00, x"2 = 225.00 l
>> [x; x.M2]°
>> [X,X.72] ans =
ans = 5 10 15
5 25 25 100 225
10 100
15 225

a = [1; -2; 3; 4;]; >> [a. b, cl
b = [10; 20; -30; 40]; ans =
c = [100; 200; 300; -400]; 1 10 100
-2 20 200
need at least %6 .3F 3 =30 300
to align first column 4 40 -400

l l

fporintf("%9.3F_|%9.3F |%9.3f\n", [a, b, c]7);

1.00 10.00d | 100.000 L |
~2 .00 20 _.000 200.000 vectorized version
3.00 -30.000 300.000
4 .00 40.000 -400.000 :
loop version
for 1=1:4, l

Tfprintf("%9.3F %9.3F %9.3fA\n", a(n),b(1),c(1));
end

sprintf examples

>> X = 3;
>> s = sprintf("x = %3.2F x*2 = 3.2F\n", X, xX"2)
S =

X = 5.00, x*2 = 25.00

>> x = [5 10 15];

>> s = sprintf("x=%5.2F, x"2=%6.2F\n",[X; xX."2])

S =
x= 5.00, x*2= 25.00 sprintf is useful for
x=10.00, x™2= 100.00 producing labels and
x=15.00, x"2= 225.00 titles in plots

File input and output — reading and writing files with
fopen, fclose, frewind,

fscanf, textscan, fgetl, fprintf

file ID — file pointer used to refer to the file during processing

fid = fopen(filename);
fid = fopen(filename, permissions)
entered as a string, or opening mode:

a pathname e.g.,

] r read, or create new
"myfile.dat” "w" write, discard old
"a” write, append to old
fclose(Tid); "w+" read or write, discard

fclose("all™); "a+" read or write, append

writing into file with fprintf

fid = fopen(filename, "w");
fprintf(fid, "format specs”, variables);
fclose(fid);

X = [5 10 15];

fp = fopen("test.dat™,"w");

fprintf(fp, "X = %5.2F, x*2 = W6.2F\n",[Xx; xX."2]);
fclose(fp);

the file test.dat now contains the lines:

x = 5.00, x»2 = 25.00
x = 10.00, x™2 = 100.00
X = 15.00, xn2 = 225.00

reading data from text file with fscanf

f
A
fc

fscanf(fid,
ose(fid);

1d = fopen(filename, "r*);
= "format_specs”);
[

>> fp = fopen(“test.dat”,"r");

>> A = fscanf(fp, "X

>> fclose(fp);
A IS returned as a column vector
/

A

25
10
100
15
225

= %F, x 2 = %F\n")

«— 1st line in file

«— 2nd line

«— 3d line

>> reshape(A,2,3)
ans =
5 10 15
25 100 225

alternative methods of using fscant

fp = fopen(“test.dat","r");
A = Tscanf(fp, “x = %f, x72 = %f\n", [2,1nT])
fclose(fp); T

read 2 rows, and indeterminate

A = number of columns
5 10 15

25 100 225

spaces are optional

fp = fopen(“test.dat","r");
A = Tscanft(fp, "%*s %*s %Ff %*s %*s %*s %f",[2,1nT])
fclose(fp);

skip over %*s fields, read only %f

reading data from text file with textscan

fp = fopen("test.dat”,"r");
A = textscan(fp, "%*s %*s %F %*s %*s %*s %F")
T

skip over %*s fields, read only %,
returned in numerical cell arrays

frewind(fp);
B = textscan(fp, “%s %s %f %s %s %s %f")
fclose(fp); Pt 1

return all %s fields in cell arrays of strings
and the %¥ fields in numerical cell arrays

A more complex example: read a file of student

names and grades, sort them, save them in a sorted file,
re-calculate grades with new weights, sort them, and save
them in another file

The file grades1 .dat contains the following lines:

Name El E2 E2 AVE G
Apple,A. 85 87 90 87.60 B+
Exxon,E. 20 58 65 49 .40 F
Facebook, F. 68 45 92 70.70 C+
Google,G. 83 54 93 78.30 B
Ibm, I. 85 100 90 91.50 A
Microsoft, M. 55 47 59 54 .20 D
Twitter,T. 70 65 72 69.30 C

The first two header lines can be skipped over with the
help of the Fgetl (get line) command. For the rest of the

file, the first & last columns are strings of unequal length
and will be extracted with textscan into cell arrays, the
numerical columns will be extracted with fscant, and
saved in a 7x4 matrix for further processing.

Name El E2 E2 AVE G
Apple,A. 85 87 90 87.60 B+
Exxon,E. 20 58 65 49 .40 F
Facebook, F. 68 45 92 70.70 C+
Google,G. 83 54 93 78.30 B
Ibm, I. 85 100 90 91.50 A
Microsoft, M. 55 47 59 54_.20 D
Twitter,T. 70 65 72 69.30 C

fclose("all™); % close any open fTiles
fp = fopen("gradesl.dat”); % open data file
fgetl (fp); fgetl(fp); % skip two header lines

A = fscant(fp, "%*s %f %F %fF %F %*s");

% read only the %f columns of numbers

% skipping over the %*s fields

% A 1Is returned as a column vector, 1n which
% every four numbers come from a row of data

o

A = reshape(A,4,7)",;
% reshape A Into same shape as the data file
% note the transposition operation

frewind(fp);
% rewind file to 1ts beginning without closing

A =
85.00
87.00 A = reshape(A,4,7)"
90.00 85.00 87.00 90.00 87.60
87.60 20.00 58.00 65.00 49.40
N 68.00 45.00 92 .00 70.70
70.00 83.00 54.00 93.00 78.30
65.00 85.00 100.00 90.00 91.50
72.00 55.00 47.00 590.00 54.20
69.30 70.00 65.00 72.00 69.30
reshape(A,4,7)
ans =
85.00 20.00 68.00 83.00 85.00 55.00 70.00
87.00 58.00 45.00 54.00 100.00 47.00 65.00
90.00 65.00 92.00 93.00 90.00 59.00 72.00
87.60 49.40 70.70 78.30 91.50 54.20 69.30

85.
20.
638 .
83.
85.
25.
70.

00
00
00
00
0]0)
0]0)
00

87

958.
45 .
o4 .
100.
.00
65.

47

.00

00
00
00
00

00

90.
65.
02.
93.
90.
99.
2.

00
00
00
00
00
00
00

87.
49 .
70.
/8.
.90

01

o4 .
69.

60
40
70
30

20
30

fgetl (fp); fgetl(fp);

C
%
%

N
%

= textscan(fp, "%s %*f %*f %*Ff %*F %s");
read text %s strings ignoring %f data

% skip header lines

C 1s 7x2 cell array of strings

= C{:,1}; G = C{:,2};

cell arrays of names and letter grades

fclose(fp);

% close Tile gradesl.dat

>> N >> (G

ans = ans =
"Apple,A." "B+"
"Exxon,E_" "F*
"Facebook,F. " "C+*
"Google,G." "B
"Ibm,1." "A*
"Microsoft,M. " "D
"Twitter,T." “C*

[av,1] = sort(A(:,4),"descend”);
% sort by AVE 1In descending order
% 1 = sorting order

As = A(1,:); % sort A, N, G according to 1
Ns = N(1); % N(1) defines new cell array
Gs = G(1); % N{1} represents the contents

fp = fopen("grades2.dat”,"w");
% create new file for sorted grades

fprintf(fp,” Name El E2 E2 AVE G\n");
forintf(fp,"---------------- - - - - - - -"-"---~—\—\—~—~—- \n®);3

for 1=1:1length(G),

fprintf(fp, "%-12s %3.0F %3.0F %3.0F %3.2F %-3s\n", ...
Ns{1}, AS(if:), Gs{;});

f

end | |
cell I-th row I-th entry of cell array
array | | needs four
%T fields

fclose(fp); % close sorted file

>> type grades2.dat

Name El E2 E2 AVE G
Ibm,I. 85 100 90 91.50 A
Apple,A. 85 87 90 87.60 B+ sorting order
Google,G. 83 54 93 78.30 B |
Facebook, F. 68 45 92 70.70 C+ -
Twitter,T. 70 65 72 69.30 C B
Microsoft,M. 55 47 59 54.20 D 5
Exxon,E. 20 58 65 49.40 F 1
>> type gradesl.dat g
Name E1l E2 E2 AVE G 7
Apple, A 85 87 90 87.60 B+ 6
Exxon, E. 20 58 65 49.40 F 2
Facebook,F. 68 45 92 70.70 C+
Google,G. 83 54 93 78.30 B
Ibm,I. 85 100 90 91.50 A
Microsoft, M. 55 47 59 54_.20 D
Twitter,T. 70 65 72 69.30 C

/matrix-vector multiplication

w = [1; 1; 1]/3;‘// % define new weights
AV2 = A(:,1:3)*w; % compute new weighted average

[AV2, 1] = sort(AV2, "descend"); % sort them
As = A(1,:); Ns = N(1); Gs = G(1); % sorted grades
fp = fopen("grades3.dat","w"); % open new file

fprintf(fp," Name E1 E2 E2 AVE G AV2 G2\n");
fprintf(fp, " - \n");

for 1=1:1length(G),

G2 = grade(AvV2(1)); % map to letter grade
fprintf(fp, "%-12s %3.0F %3.0F %3.0F %3.2F ...
%-3s %3.2F %-3s\n", Ns{i1},As(1,:),Gs{i},AV2(1),G2);

end

fclose(fp);

M-file, grade.m

function G = grade(Q)

1t g >= 90,

G ="A ";
elseif g >= 85,
G = "B+";
elseif g >= 75,
G ="B ";
elseif g >= 70,
G = "C+7;
elseif g >= 60,
G="7"C 7;
elseif g >= 50,
G ="D *;

else
G ="F *;

end

% letter grade

>> type grades3.dat

Name E1l E2 EZ2 AVE G AV2 G2
Ibm, I. 85 100 90 91.50 A 01.67 A
Apple,A. 85 87 90 87.60 B+ 87.33 B+
Google,G. 83 54 93 78.30 B 76 .67 B
Twitter,T. 70 65 72 69.30 C 69.00 C
Facebook, F. 68 45 92 70.70 C+ 68.33 C
Microsoft,M. 55 47 59 54.20 D 53.67 D
Exxon, E. 20 58 65 49.40 F 47 .67 F

The zip file gradesl1.zip contains the complete source code

reading & writing excel files, xIsread, xlIswrite

Ed Microsoft Excel - grades1.xls E"E|g|
@ Fle Edit View Insert Format Tools Data Window Help Adobe PDF estion for help = | <18
Cedan Ry s ma.< @& = -4, % i 4B 260% ~ (3 Al ~10 ~|B 7 u|lSE=EE|s %, #8[EE|-2-4-.
0 B % T
=

D11 v &

| A B C D E F
1 Names E1 E2 E3 Av G
2 Apple, A. 85 87 | 90 | 876 B+
3 Exxon, E 20 58 65 494 F
4 Facebook, F. 70 65 12 70.7 C
5 Google, G 83 54 93 78.3 B
6 A
7 D
8 C+
9

1om, |. 85 100 90 915
Microsoft, M. 55 47 59 542
Twitter, T. 68 45 92 693

W« » o\ Sheetl / Sheets { Sheet3 / ' ' [« J i

Ready

" [@ C:\wiP\do... |) MATIAB 7.1.. | [€ MicosoftPo.. | & E:\440-127\.. | BY Programmer.. E3 Microsoft Exc.. 5 & L7 ClG S ss7eM

>> [A,C]

= xlIsread("gradesl.xls")

/

numerical | | text

cells
85.0000 87 .
20.0000 58.
70.0000 65.
83.0000 54 .
85.0000 100.
55.0000 47
68.0000 45

0000
0000
0000
0000
0000

-0000

0000

90.
65.
72.
93.
90.
59.
02.

0000
0000
0000
0000
0000
0000
0000

87 .
49 _
70.
/8.
O1.
o4 .
69.

6000
4000
/7000
3000
5000
2000
3000

"Names " "E1" "E2" "E3" Av" "G”
"Apple, A." -

"Exxon, E-F " . - - F °
"Facebook, F.*" " " " " "C -
"Google, G- " " " =" "B *

“lbm, I.° - . " - "A "
“Twitter, T.© == "% T T tCHT

>> xlIswrite("grades2.xls",A);

Image Files

A = 1mread(filename, fmt);
[A, map] = imread(filename, fmt);

imvrite(A,filename,fmt);
imfFinfo(filename);

fmt: "jpg”, “Jp2°, “"png", "tiff*, "png”,
"gif", "bmp*, and other

these functions have additional input/output options

y = 1mread("ngc6543a.jpg", "Jpg”);

image(y);
title("NGC 6543 Nebula®); axis off;

NGC 6543 Nebula

e Er e

load mandrill; % MATLAB demo 1mage
image(X); % X,map are part of the
colormap(map); % saved mandrill_mat file

200
300 ===

4007

100 200 300 400 500

sl = "http://upload.wikimedia.org/";
s2 = "wikipediaZ/commons/d/de/ " ;

s3 = "St_Louis_night_expblend.jpg”;
filename = [s1,s2,s3];

y = imread(filename, "jpg~);
image(y); axis off,;

T ‘h, u,lwullu wu | I|M|

"http://upload.wikimedia.org/wikipedia/commons/d/de/St _Louis _night _expblend. jpg*

Reading, Writing, Recording, Playing Audio Files

[v,fs] = wavread(filename);

wavwrite(y,fs,filename);

y = wavrecord(n,fs); % n samples
y = wavrecord(N*fs,fs); % N seconds
sound(y,fs);

wavplay(y,fs);

% typical, fs = 8000, 11025, 22050, 44100

these functions have additional input/output options,
see week-2 lecture notes for some examples

Voice Scrambler Example

reads & plays a wave file

scrambles it by frequency inversion implemented by
lowpass filtering and AM modulation

plays the scrambled version

unscrambles it & plays it back

Voice Scrambler

s(n)

lowpass

{ lowpass
y,(n) filter y(n)

x(n) IRLEE v.(n)

lowpass +X(f) carrier

fllter \‘ /frequency
X(f+fo) X(f- fo) shifted
“ __~~ spectrum
| -f

Inverted
spectrum

% scrambler.m - scrambler example

clear all

fs = 16000; fO = 3300; wO = 2*pi1*f0/fs; % Filter"s cutoff

100; n = 0:M;
0.54 - 0.46*cos(2*pi1*n/M);

o=
i1

[X,fs] = wavread("JB.wav");
sound(x,fs);

t = (0O:length(x)-1)";

s = 2*cos(wO*t);

y = filter(h,1,x) .* s;
y = filter(h,1,y);

pause; sound(y,fs);

filter(h,1,y) .* s;
filter(h,1,y);

y
y

pause; sound(y,fs);

w .* sinc(wO/pi*(n-M/2)) * wO/pi;

%
%

%
%

%
%

%

%

%

% Ffilter order M=100
% Hamming window
% design filter

read wave fTile
here, s=16000

here, length(x)=71472
sinusoirdal carrier

scramble by AM modulation
and lowpass filtering

play scrambled file

unscramble

play unscrambled file

Record and scramble/unscramble your own voice

Connect a mike at the microphone input of your PC,
execute the following MATLAB commands to
record your voice for 5 seconds at a sampling

rate of 16000 samples/sec, and save the recording
In a wavefile "test.wav", then edit the program

scrambler .m to read this wave file, and run it.

fs = 16000;

y = wavrecord(5*fs, fs);

wavwrite(y,fs, "test.wav");

5*fs = number of samples in 5 sec

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

