Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department
orfanidi@ece.rutgers.edu

week 7

— | Week

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting — 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output processing (ch. 7)
7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)
Week 9 - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods — data fitting (ch. 12)
Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

Relational and logical operators
Logical indexing

fi1nd function

Program flow control

for - loops

while - loops

1 T — statements

switch — statements

break, continue
Examples: series calculations,
square-root algorithm, piece-wise
functions, unit-step function, indicator
functions, sinc function, echoes

Relational and Logical Operators

Relational and logical functions

find, logical, true, false, any, all

iIschar, i1sequal, i1sfinite, i1sinf, 1sinteger
islogical, i1snan, isreal

>> doc 1s* % list of all "i1s"™ functions
>> help logical % convert to logical

>> help true % logical 1

>> help false % logical O

>> help relop % relational operators

>> help ops % same as help /

>> help find % 1ndices of non-zero elements
>> help precedence

Relational Operators

== equal

not equal

less than

greater than

less than or equal

greater than or equal >> help relop

~

v A 1l

<
>

Logical Operators

& logical AND, e.g., A&B, A,B=expressions
&& logical AND for scalars w/ short-circuiting
| logical OR, e.g., A|B, or A|]|B

11 logical OR for scalars w/ short-circuiting
~ logical NOT, e.g., ~A

xor exclusive OR, e.g., xor(A,B)

any true 1T any elements are non-zero

all true 1f all elements are non-zero

> a =[12 0 -3 7];
> b =[3 24 -17];
>> a == Db
ans =
0 1 0 0 1
>> g == -
ans =
0 0 0 1 0
>> find(a==-3) % otherwise, empty
ans =
4
>> find(a), find(a>=2), find(a<=0)
ans = '\
1 2 4 5 S>> g>=2
ans = ans =
2) O 1 0 0 1
ans =

3 4

> a=]120 -3 7];
> pb =324 -17];
> a < Db

ans =

1 O 1 1 O

>> a>=2, b<=2

ans =

o 1 0 0 1
ans =

o 1 0 1 O
>> (a>=2) & (b<=2) % Blogical AND
ans =

o 1 0 O O
>> (a>=2) | (b<=2) % logical OR
ans =

O 1 O 1 1

>>a =134 -37]; logical indexing

(a>=2), m = find(a>=2)

V
V

~
I

O 1

1 0 1
e 2/3/5/

class(k) is logical

>> a(m), a(k) logical indexing a(a>=2)
ans =
3 4 4
ans =
3 4 4
>>i=[0110 1} ciI:a:sksi(Slzijszeclouble, but
>> a(n)

??? Subscript indices must either be real
positive integers or logicals.

% but note, a(logical(1)) works

>> A = [3 4 nan; -5 inf 2] more on
logical indexing

3 4 NaN
-5 Inf 2
>> k = isfinite(A) - >> flnd(k)
k = - ans =
1 1 0 § 1
1 0 1 i 2 .
: P
>> A(K) % listed column-wise :
_ i 6 i
ans = ,/// e :
3 S
5 >> [i,j] = find(k)
4
2
>> A(~k)=0 % set non-finite entries to zero
A =
3 4 0
-5 O 2

A=1]J9 9 2 B=1[7 1 7
2 5 4 3 4 8
9 8 9]; 9 4 2]
>> A> Find(A<B) [1,)]=Find(A<B)
ans = ans = 1= J =
O 0 1 2 2 1
1 0 1 7 1 3
O 0 O 8 2 3
>> A== >> Find(A==9) | |>> A(A==9)=-9
ans = ans = A =
1 1 O 1 -9 -9 2
O 0 O 3 2 > 4
1 0 1 4 -9 8 -9
9

any,al I operate column-wise,
or, row-wise with extra argument

A=1]J9 9 2 B=1[7 1 7

2 5 4 3 4 8

9 8 9]; 9 4 2];
any(A==2) all (A>B) ==B
ans = ans = ans =

1 0 1 O 1 O O O O

O 0 O

any(A==2,2) all(A>B,2) 1 0 O
ans = ans =

1 0 any(A==B)

1 0] ans =

0 0 1 0 O

any(any(A==B))
ans =
1

all(all(A==B));

>> A = [36 -4 9; 16 9 -25], B=A;
A =

36 -4 9
16 9 -25
>> k = (B>=0)
K = Example:
1 0 1 take square-roots of the
1 1 0 absolute values, but
preserve the signs

>> B(k) = sqrt(B(k));
>> B(~k) = -sqrt(-B(-k))
B =
6 -2 3
4 3 -5

Program Flow Control

Program flow is controlled by the
following control structures:

1. for...end % loops

2. while . . . end

3. if...end % condrtional
4. if...else.. .end

5. if...elseif...else...end

6. switch ... case . . . otherwise. . .end

7. break, continue

for-loops and conditional ifs are by far the
most commonly used control stuctures

for variable = expression for - loops

statements ...
end

>> N=1000; S=0;
>> for n=1:N,

J\.r
S =S + 1/n"2; % compute sum: Lszzzz-i—
12
end n=1
>> S
S =
1.6439
>> n = 1:N; S = sum(1./n."2) % vectorized
S =

1.6439

while condition while - loops

statements ...
end

>> N=1000; S=0; n=1;
>> while n<=N, N
S =S+ 1/n"2; % compute sum: S= > —
n=1 n?

n = n+l;
end
>> S
S =
1.6439
>> pin2/6 % note the limiting sum, m° _ i 1
ans = % first derived by Euler ¢ N2

n=1

1.6449

If - statements

1T condition 1T condition
statements ... statements ...
end elserf condition
statements ...
1T condition elserft condition
statements ... statements ...
else else
statements ... statements ...
end end

|

several elsei1 T statements
may be present,

elsei T does not need a matching end

>> X = 1;
>> 0% x = 0/0
>> U x = 1/0

>> 1t 1sinf(x),
disp("x 1s Infinite");
elseilf 1snan(x),
disp("x 1s not-a-number”);
else
disp("x 1s finite number*®);
end

X 1S Finite number
% X 1S not-a-number
% X 1s Infinite

X =[1, -4, 5, 3]; p = Inf;

switch p
case 1
N = sum(abs(x));
case 2
N = sqgrt(sum(abs(x).”2));
case iInf
N = max(abs(x));
otherwise

N = sqrt(sum(abs(x).~2));
end

switch expression -« this expression is evaluated first,

case expression $\\\\\\znniﬁﬂsvaMernaKhesanyof
statements ... | these, then the corresponding
case expression « | case-statements are executed
stat_ements ST several case statements
UHEISE may be present
statements ...
end

equivalent calculation using
the built-in function norm :

/

% N norm(x,1);

o

%» N = norm(x,2);
% N = norm(x, inf);

% N

norm(x,?2);

L,, L,, and L, norms of a vector

X = [Xls X2, ---sXN]

N
IxIl = > [xnl

n=1

N .

Ixl = Z T discussed further
Xll2 = An in week 8

\n:l
”X”l — maX(|X1|, |X2|s ey |XN|)

>> help norm % vector and matrix norms

break

terminates execution of a loop, and
continues after the end of the loop

terminates out of a nested loop only

continue

stops present pass through a loop,
but continues with next pass

break
continue

Example 1: Series calculations

n—2f§i (1" —2ihmli (1"
ST A& Rk + 13k T nee & (2 + 1) 3K

i Z (—1)k (—1)"
- 2k+1 3k - 2k+1)3’< (2n +1)3n

S, =S, |+ (=D" n>1, So=1
n n—1 (2?’1 v 1)3ns = y 0
|

Recursion can be implemented with a for-loop or a while-loop

N = 10000; S = 1;

for n=1:N,
T =™ /7(2*n+1)/3™n;
1T abs(T) < eps
break;
end
S =S + T;
end

n, [pl; 2*sgrt(3)*S]

n =
30

ans =
3.141592653589793
3.141592653589794

%

%
%
%
%
%

%

%
%

inttialize

n-th term
break out of
the for-loop
1T T 1s small
update sum

compare with pi

actual number
of 1terations

S=0; T=1; n=0;

while abs(T) > eps

S =S + T,

n = n+l;

T= (D™ / (2*n+l) / 3™n;
end
n, [pi; 2*sqrt(3)*S] % compare with pi
n =

30
ans =

3.141592653589793
3.141592653589794

Example 2: Vectorized Taylor series calculations

Xx =130 -4 10]",; % column vector
S = ones(size(X)); % mEnherits size of Xx
T = 1;
N = 10000; % max 1terations
for n=1:N,
T = T.*X/n; % n-th term
1T max(abs(T)) < eps % break 1f T<eps
break; % why max(abs(T))?
end
S =S+ T; % update sum

end

fprintf (- X exp(x) S\n");

foraintfFC----—-———----------------- - - - - \n");
fprintf("% 7.2F %12.6F %l2.6FA\n", [X,exp(x),S]");
fpraintf(C"------------------————_——— \n");
fprintf(["1terations n = ",Int2str(n),"\n"]);
X exp(x) S
1.00 2.718282 2.718282
3.00 20.085537 20.085537
0.00 1.000000 1.000000
-4._.00 0.018316 0.018316

10.00 22026.465795 22026.465795

1terations n

[
O1
N

Example 3: Square-root algorithm

a = 20; % sgrt(a) = 4.472135954999580
x(1) = 8; % arbitrary initial value
for n=1:N-1,

x(n+1)
end

x(n) + a/x(n))/2;

fprintf(" n

fprintf("-----—————————-

fprintfF("%3.0F %17.15A\n~", [1:N; Xx]);

-000000000000000
-250000000000000
-529761904761905
.472502502972279
-472135970019965
-472135954999580
-472135954999580
-472135954999580
-472135954999580
.472135954999580

COWWO~NOOOUILSA,WNEPE
A, DBADADIDIMDMDMOIO©

 —

converged in
6 iterations

a = 20; N=10; x(1) = 8; % minitialize
fprintf(" n x(n) \n");
fprointf("----------—-—-—-—--—————— \n");

for n=1:N-1,

fprintf("%2.0F %17.15FA\n", n,x(n));
1T abs(x(n)"2-a)<=eps(a), break; end
x(n+l) = (x(n) + a/x(n))/2; I

end
break out of the
n x(n) loop if converged
______________________ within the floating

-000000000000000 point limits

1 8

2 5.250000000000000
3 4.529761904761905
4 4_.472502502972279
5 4
6 4

.472135970019965 | converged in
_472135954999580 | b Iterations

a=20; x=8;n=1; X =1[n, x];

while abs(x”"2-a)>eps(a) % note eps(a)
X = (X + a/x)/2;
n = n+l; X = [X; n, X];
end
fprintf(" n X \n"):
fprintf(' ______________________ \n-);
fprintf("%2.0F %17.15RA\n", X*);
n X

1 8.000000000000000
2 5.250000000000000
3 4.529761904/761905
4 4.472502502972279
S 4.472135970019965
6 4.472135954999580

Example 4. Defining piece-wise functions

[(x)=11, 05<x<15 o5

1.5 2

—

0 0.5

1, a<x<b o _
v(x,a,b)= - _ = (indicator function)
0, otherwise

f(x)=2xVv(x, 0, 0.5 +v(x, 0.5, 1.5)+(4 — 2x)v(x, 1.5, 2)

v = @(x,a,b) ((>=a) & (x<b));

f = @(X) 2*x.*v(x,0,0.5) + v(x,0.5,1.5) + _..

(4-2*x).*v(X,1.5,2);

x = linspace(-0.5,2.5,301);

figure; plot(x,f(x),

"b-");

0.57

v = @(x,a,b) ((>=a) & (x<b));

f = @(X) 2*x.*v(x,0,0.5) + v(x,0.5,1.5) + _..
(4-2*x) .*v(x,1.5,2);

X = linspace(0,5,501);
figure; plot(x,f(xX)+f(x-3), "b-");

replicating f(x)

0.5

0 ! ! ! w ! ! !
0 05 1 15 2 25 3 35 4 45 5
x

unit-step function

~

1, x=0
u(Xx)= -

MO, otherwise . - X
= 0(x) (x>=0); % unit-step function
e.g., x =-3,-2,-1, 0, 1, 2, 3
u(x) 0, 0, 0, 1, 1, 1, 1
Indicator function 1
vix,a,b)=u(x—a)-u(x—>b) . - X
= @0(x,a,b) u(x-a)-u(x-b); % Endicator

Example 5. Evaluating the sinc function

function y = my _sinc(x)
warning off;

y = sin(pi*x)./(pi1*x);
y(isinf(x)) = 0;

y(x==0) = 1;

generates NaNs for
X=1n¥ and x=0

fix NaN when x=1n¥Ff

fix NaN when x=0

X =[O O inf 0 nan];
y = sin(pi1*x)./(pi1*x)
y =
NaN NaN NaN NaN NaN
1Isinf(x)
ans =
0 0 1 0 0
y(isinf(x)) = 0
y =
NaN NaN 0] NaN NaN
x==0
ans =
1 1 0 1 0
y(x::()) = 1
y =

1 1 O 1 NaN

Example 5. Overlapping Echoes

a simple example of a Digital Audio Effect
reads a wave file and plays a 20-sec portion of it

then, adds three overlapping copies of itself and plays
the result

llustrates the use of for-loops, if-statements, and pre-
allocation to speed up processing

complete program, echoes.m, and supporting
wave files are in the zip file, echoes.zip,
(under week-2 resources on sakai)

X(t) =Q - y(t)
delay | D
a
X{t-D) w
D , block-diagram realization
d
X(t—2D)
b 3
X(t-3D) *
y(t) A shifted copies
X(t) ax(t—=D)
/ a2 x(t—2D)
/ a3 (t-3D)
> 1

0 D 2D 3D

y(t) = x(t) + ax(t-D) + a2x(t—2D) + a3x(t—3D)

% echoes.m — listen to overlapping echoes

clear all;

[X,Fs] = wavread("dsummer.wav"); % read wave file and Fs

N = min(round(20*Fs), length(x)); % play no more than 20 sec
X = X(1:N); % truncate x to length N

sound(x,Fs); % play x

T =1/2; D = round(T*Fs); % echo delay in sec and in samples

Fs, N, D % here, Fs=44100, N=839242, D=22050
a = 0.5; % multiplier coefficient
y = zeros(size(X)); % pre-allocation speeds up processing

tic % tic-toc - execution time

for n=1:length(x), % overlapped signal y
1T n<=D,
y(n) = x(n);

elseilft n<=2*D,
y(n) = x(n) + a * x(n-D);
elseif n<=3*D,
y(n) = x(n) + a * x(n-D) + a2 * x(n-2*D);
else,
y(n) = x(n) + a * x(n-D) + a2 * x(n-2*D) +...
a3 * x(n-3*D);
end
end
toc

pause; sound(y,Fs); % play y

pre-allocation results

wave Tile Fs N with without
JB.wav 16000 71472 0.02 sec 34.44 sec
nodelay.wav 22050 266758 0.13 sec 702.33 sec
dsummer.wav 44100 839242 0.39 sec too long

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

