
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 7



Week  1  - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week  2  - Basics – operators, functions, program flow (ch. 2 & 3)
Week  3  - Matrices (ch. 4)
Week  4  - Plotting – 2D and 3D plots (ch. 5)
Week  5  - User-defined functions (ch. 6)
Week  6  - Input-output processing (ch. 7)
Week  7  - Program flow control & relational operators (ch. 8)
Week  8  - Matrix algebra – solving linear equations (ch. 9)
Week  9  - Structures & cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed.,  Prentice Hall, 2009



Topics

Relational and logical operators
Logical indexing
find function
Program flow control
for - loops
while - loops
if – statements
switch – statements
break, continue
Examples: series calculations,
square-root algorithm, piece-wise
functions, unit-step function, indicator 
functions, sinc function, echoes



Relational and Logical Operators

>> doc is*        % list of all 'is' functions
>> help logical   % convert to logical
>> help true      % logical 1
>> help false     % logical 0
>> help relop     % relational operators
>> help ops       % same as help /
>> help find      % indices of non-zero elements

Relational and logical functions

find, logical, true, false, any, all

ischar, isequal, isfinite, isinf, isinteger
islogical, isnan, isreal

>> help precedence



& logical AND,    e.g., A&B, A,B=expressions
&& logical AND for scalars w/ short-circuiting
| logical OR,     e.g., A|B, or A||B
|| logical OR for scalars w/ short-circuiting
~ logical NOT,    e.g., ~A
xor exclusive OR,   e.g., xor(A,B)
any true if any elements are non-zero 
all true if all elements are non-zero

Logical Operators

== equal                         
~= not equal                     
< less than                     
> greater than                  

<= less than or equal            
>= greater than or equal 

Relational Operators

>> help relop



>> a = [1 2 0 -3 7]; 
>> b = [3 2 4 -1 7]; 
>> a == b
ans =

0   1   0   0   1
>> a == -3
ans =

0   0   0   1   0
>> find(a==-3)         % otherwise, empty
ans =

4
>> find(a), find(a>=2), find(a<=0)
ans =

1   2   4   5
ans =

2   5
ans =

3   4

>> a>=2
ans =

0  1  0  0  1



>> a = [1 2 0 -3 7]; 
>> b = [3 2 4 -1 7]; 

>> a < b
ans =

1   0   1   1   0

>> a>=2, b<=2
ans =

0   1   0   0   1
ans =

0   1   0   1   0

>> (a>=2) & (b<=2)            % logical AND
ans =

0   1   0   0   0

>> (a>=2) | (b<=2)            % logical OR
ans =

0   1   0   1   1



>> a = [1 3 4 -3 7];

>> k = (a>=2), m = find(a>=2)
k =

0   1   1   0   1
m =

2   3   5

>> a(m), a(k)                       a(a>=2)  
ans =

3   4   7
ans =

3   4   7

>> i = [0 1 1 0 1]
>> a(i)               
??? Subscript indices must either be real 
positive integers or logicals.

% but note, a(logical(i)) works

logical indexing

class(i) is double, but
i==k is true

class(k) is logical

logical indexing



more on 
logical indexing

>> A = [3 4 nan; -5 inf 2]
A =

3     4   NaN
-5   Inf     2

>> k = isfinite(A)
k =

1     1     0
1     0     1

>> A(k)     % listed column-wise
ans =

3
-5
4
2

>> A(~k)=0    % set non-finite entries to zero
A =

3     4     0
-5     0     2

>> find(k)
ans =

1
2
3
6

>> [i,j] = find(k)



A = [9  9  2     B = [7  1  7
2  5  4          3  4  8
9  8  9];        9  4  2];

>> A<B
ans =

0  0  1
1  0  1
0  0  0

>> find(A<B)
ans =

2
7
8

>> A==9
ans =

1  1  0
0  0  0
1  0  1

>> find(A==9)
ans =

1
3
4
9

>> A(A==9)=-9
A =

-9  -9   2
2   5   4

-9   8  -9

[i,j]=find(A<B)
i =   j = 

2     1    
1     3
2     3



A = [9  9  2     B = [7  1  7
2  5  4          3  4  8
9  8  9];        9  4  2];

any(A==2)
ans =

1  0  1

any(A==2,2)
ans = 

1
1
0

A==B
ans =

0  0  0
0  0  0
1  0  0

any(A==B)
ans = 

1  0  0

any(any(A==B))
ans = 

1

any
all

all(A>B)
ans =

0  1  0

all(A>B,2)
ans = 

0
0
0

any,all operate column-wise,
or, row-wise with extra argument

all(all(A==B));



>> A = [36 -4 9; 16 9 -25], B=A;

A =
36    -4     9
16     9   -25

>> k = (B>=0)  

k =
1     0     1
1     1     0

>> B(k) = sqrt(B(k)); 
>> B(~k) = -sqrt(-B(~k))

B =
6    -2     3
4     3    -5

Example:
take square-roots of the
absolute values, but
preserve the signs



Program flow is controlled by the 
following control structures:

1.  for . . . end % loops
2.  while . . . end

3.   if . . . end % conditional
4.   if . . . else . . .end 
5.   if . . . elseif . . . else . . . end
6.   switch . . . case . . . otherwise. . .end
7.   break, continue

Program Flow Control

for-loops and conditional ifs are by far the
most commonly used control stuctures



for variable = expression
statements ...

end

>> N=1000; S=0;
>> for n=1:N,

S = S + 1/n^2;    % compute sum:
end

>> S
S =

1.6439

>> n = 1:N; S = sum(1./n.^2)    % vectorized
S =

1.6439

for - loops



while condition
statements ...

end

>> N=1000; S=0; n=1;
>> while n<=N,

S = S + 1/n^2;   % compute sum:
n = n+1;

end

>> S
S =

1.6439

>> pi^2/6      % note the limiting sum,
ans = % first derived by Euler

1.6449

while - loops



if condition
statements ...

end

if condition
statements ...

else
statements ...

end

if condition
statements ...

elseif condition
statements ...

elseif condition
statements ...

else
statements ...

end

several elseif statements     
may be present, 

elseif does not need a matching end

if - statements



>> x = 1;
>> % x = 0/0
>> % x = 1/0

>> if isinf(x),
disp('x is infinite');

elseif isnan(x),
disp('x is not-a-number');

else
disp('x is finite number');

end

x is finite number
% x is not-a-number
% x is infinite



switch expression
case expression

statements ...
case expression

statements ...
otherwise

statements ...
end

x = [1, -4, 5, 3]; p = inf;
switch p

case 1
N = sum(abs(x));             % N = norm(x,1);

case 2 
N = sqrt(sum(abs(x).^2));    % N = norm(x,2);

case inf
N = max(abs(x));             % N = norm(x,inf);

otherwise
N = sqrt(sum(abs(x).^2));    % N = norm(x,2);

end

equivalent calculation using
the built-in function norm :

this expression is evaluated first, 
and if its value matches any of 
these, then the corresponding 
case-statements are executed 

several case statements 
may be present



L1, L2, and L∞ norms of a vector

>> help norm      % vector and matrix norms

discussed further 
in week 8



break

terminates execution of a loop, and
continues after the end of the loop

terminates out of a nested loop only

break
continue

continue

stops present pass through a loop,   
but continues with next pass



Example 1:  Series calculations

Recursion can be implemented with a for-loop or a while-loop



N = 10000; S = 1;             % initialize

for n=1:N,
T = (-1)^n /(2*n+1)/3^n;   % n-th term
if abs(T) < eps            % break out of

break;                  % the for-loop
end                        % if T is small
S = S + T;                 % update sum

end

n, [pi; 2*sqrt(3)*S]          % compare with pi

n = % actual number
30 % of iterations

ans =
3.141592653589793
3.141592653589794



S = 0; T = 1; n = 0;

while abs(T) > eps
S = S + T;
n = n+1;
T =  (-1)^n / (2*n+1) / 3^n;

end

n, [pi; 2*sqrt(3)*S]       % compare with pi

n =                      
30

ans =
3.141592653589793
3.141592653589794



Example 2:  Vectorized Taylor series calculations



x = [1 3 0 -4 10]';     % column vector

S = ones(size(x));      % inherits size of x
T = 1; 
N = 10000;              % max iterations

for n=1:N,
T = T.*x/n;             % n-th term
if max(abs(T)) < eps    % break if T<eps

break;               % why max(abs(T))?
end
S = S + T;              % update sum

end



fprintf('     x        exp(x)           S\n');
fprintf('------------------------------------\n');
fprintf('% 7.2f  %12.6f  %12.6f\n', [x,exp(x),S]');
fprintf('------------------------------------\n');
fprintf(['iterations n = ',int2str(n),'\n']);

x        exp(x)           S
------------------------------------

1.00      2.718282      2.718282
3.00     20.085537     20.085537
0.00      1.000000      1.000000
-4.00      0.018316      0.018316
10.00  22026.465795  22026.465795

------------------------------------
iterations n = 52



Example 3:  Square-root algorithm

a = 20;    % sqrt(a) = 4.472135954999580
N = 10;  
x(1) = 8;      % arbitrary initial value

for n=1:N-1,
x(n+1) = (x(n) + a/x(n))/2;

end



fprintf(' n           x        \n');
fprintf('----------------------\n');   
fprintf('%3.0f   %17.15f\n', [1:N; x]);

n           x          
----------------------
1   8.000000000000000
2   5.250000000000000
3   4.529761904761905
4   4.472502502972279
5   4.472135970019965
6   4.472135954999580
7   4.472135954999580
8   4.472135954999580
9   4.472135954999580

10   4.472135954999580

converged in
6 iterations



a = 20; N = 10; x(1) = 8;  % initialize
fprintf(' n          x(n)      \n');
fprintf('----------------------\n');

for n=1:N-1,
fprintf('%2.0f   %17.15f\n', n,x(n));
if abs(x(n)^2-a)<=eps(a), break; end    
x(n+1) = (x(n) + a/x(n))/2;

end

n          x(n)        
----------------------
1   8.000000000000000
2   5.250000000000000
3   4.529761904761905
4   4.472502502972279
5   4.472135970019965
6   4.472135954999580

converged in
6 iterations

break out of the
loop if converged
within the floating
point limits



a = 20; x = 8; n = 1; X = [n, x];

while abs(x^2-a)>eps(a)    % note eps(a)
x = (x + a/x)/2;
n = n+1; X = [X; n, x];

end

fprintf(' n           x        \n');
fprintf('----------------------\n');   
fprintf('%2.0f   %17.15f\n', X');

n           x          
----------------------
1   8.000000000000000
2   5.250000000000000
3   4.529761904761905
4   4.472502502972279
5   4.472135970019965
6   4.472135954999580
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Example 4:  Defining piece-wise functions



-0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

x

v = @(x,a,b) ((x>=a) & (x<b));

f = @(x) 2*x.*v(x,0,0.5) + v(x,0.5,1.5) + ...
(4-2*x).*v(x,1.5,2);

x = linspace(-0.5,2.5,301);

figure; plot(x,f(x), 'b-');



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

x

v = @(x,a,b) ((x>=a) & (x<b));

f = @(x) 2*x.*v(x,0,0.5) + v(x,0.5,1.5) + ...
(4-2*x).*v(x,1.5,2);

x = linspace(0,5,501);

figure; plot(x,f(x)+f(x-3), 'b-');

replicating f(x)



u = @(x) (x>=0);     % unit-step function

unit-step function

v = @(x,a,b) u(x-a)–u(x-b);   % indicator

indicator function

x
0

x
a b

1

1

e.g., x =-3,-2,-1, 0, 1, 2, 3
u(x)= 0, 0, 0, 1, 1, 1, 1



Example 5:  Evaluating the sinc function

function y = my_sinc(x)

warning off;

y = sin(pi*x)./(pi*x);       

y(isinf(x)) = 0;

y(x==0) = 1;             

generates NaNs for 
x=inf and x=0

fix NaN when x=inf

fix NaN when x=0



x = [0 0 inf 0 nan];
y = sin(pi*x)./(pi*x)
y =

NaN   NaN   NaN   NaN   NaN

isinf(x)
ans =

0     0     1     0     0
y(isinf(x)) = 0
y =

NaN   NaN     0   NaN   NaN

x==0
ans =

1     1     0     1     0
y(x==0) = 1
y =

1     1     0     1   NaN



• a simple example of a Digital Audio Effect

• reads a wave file and plays a 20-sec portion of it

• then, adds three overlapping copies of itself and plays 
the result

• illustrates the use of for-loops, if-statements, and pre-
allocation to speed up processing

complete program, echoes.m, and supporting 
wave files are in the zip file, echoes.zip, 
(under week-2 resources on sakai)

Example 5:  Overlapping Echoes



block-diagram realization

x t( )

t
0

y t x t ax t a x t a x t( ) =  ( ) + ( ) + ( ) + ( )− − −D D D2 32 3

y t( )

a x t2 ( )−2D
ax t( )−D

a x t3 ( )−3D

3D2DD

shifted copies

x t( ) y t( )

x t( ) −3D

 D

 D

Ddelay

x t( ) −2D

x t( )−D
a

a3

a2



% echoes.m – listen to overlapping echoes

clear all;

[x,Fs] = wavread('dsummer.wav'); % read wave file and Fs

N = min(round(20*Fs),length(x)); % play no more than 20 sec

x = x(1:N); % truncate x to length N

sound(x,Fs); % play x

T = 1/2; D = round(T*Fs); % echo delay in sec and in samples

Fs, N, D % here, Fs=44100, N=839242, D=22050

a = 0.5; % multiplier coefficient

y = zeros(size(x)); % pre-allocation speeds up processing



tic                      % tic-toc - execution time
for n=1:length(x),       % overlapped signal y

if n<=D, 
y(n) = x(n); 

elseif n<=2*D, 
y(n) = x(n) + a * x(n-D); 

elseif n<=3*D, 
y(n) = x(n) + a * x(n-D) + a^2 * x(n-2*D); 

else, 
y(n) = x(n) + a * x(n-D) + a^2 * x(n-2*D) +...

a^3 * x(n-3*D); 
end

end
toc

pause; sound(y,Fs);      % play y



pre-allocation results

wave file       Fs      N      with without

JB.wav        16000   71472   0.02 sec 34.44 sec
nodelay.wav   22050  266758   0.13 sec 702.33 sec
dsummer.wav   44100  839242   0.39 sec too long
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