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Week  1  - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week  2  - Basics – operators, functions, program flow (ch. 2 & 3)
Week  3  - Matrices (ch. 4)
Week  4  - Plotting – 2D and 3D plots (ch. 5)
Week  5  - User-defined functions (ch. 6)
Week  6  - Input-output processing (ch. 7)
Week  7  - Program flow control & relational operators (ch. 8)
Week  8  - Matrix algebra – solving linear equations (ch. 9)
Week  9  - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed.,  Prentice Hall, 2009



Matrix Algebra

• dot product
• matrix-vector multiplication
• matrix-matrix multiplication
• matrix inverse
• solving linear systems
• least-squares solutions
• determinant, rank, condition number
• vector & matrix norms
• examples
• electric circuits
• temperature distributions

The dot product is the basic operation in 
matrix-vector and matrix-matrix multiplications



Operators and Expressions

operation               element-wise    matrix-wise

addition                            +         +
subtraction                       - -
multiplication                  .*         *
division                           ./         /
left division                     .\ \
exponentiation                .^         ^

transpose w/o complex conjugation .'                  
transpose with complex conjugation '

>> help /         
>> help precedence

used in matrix 
algebra operations



>> A = [1 2; 3 4]
A =

1     2
3     4

>> [A, A.^2; A^2, A*A]        % form sub-blocks
ans =

1     2     1     4
3     4     9    16
7    10     7    10      % note A^2 = A*A

15    22    15    22

>> B = 10.^A; 
>> [B, log10(B)]
ans =

10         100           1           2
1000       10000           3           4



>> A = [1 2 3; 2 0 4; 0 8 5]
A =

1     2     3 
2     0     4
0     8     5    

>> size(A)       % [N,M] = size(A), NxM matrix
ans =

3     3

matrix indexing
convention



math
notations

MATLAB
notation

dot product

a, b must have the same 
dimension



math
notations

MATLAB
notation

dot product
for complex-valued vectors

complex-conjugate transpose,
or, hermitian conjugate of  a

for real-valued vectors, the
operations  ' and  .'
are equivalent



>> a = [1; 2; -3];  b = [4; -5; 2];
>> a'*b
ans =

-12
>> dot(a,b)        % built-in function
ans =              % same as sum(a.*b)

-12



matrix-vector multiplication

combine three dot product
operations into a single
matrix-vector multiplication



matrix-vector multiplication

combine three dot product
operations into a single
matrix-vector multiplication

A x = b



matrix-matrix multiplication

combine three matrix-vector 
multiplications into a single 
matrix-matrix multiplication



>> A = [4 1 2; 1 -1 1; 2 1 1]
A =

4     1     2
1    -1     1
2     1     1

>> B = [5 -1 -3; -4 3 1; -7 2 6]
B =

5    -1    -3
-4     3     1
-7     2     6

>> C = A*B
C =

2     3     1
2    -2     2
-1     3     1



C(i,j) is the dot product of i-th row of A with j-th column of B

note:
A*B ≠ B*A



Rule of thumb:

(NxK)x(KxM) --> NxM

A is NxK
B is KxM
then, A*B is NxM



vector-vector multiplication

(1x3)x(3x1) --> 1x1 = scalar

(3x1)x(1x3) --> 3x3



vector-vector multiplication

>> [1, 2, 3] * [2 -3 -1]'

ans =

-7

>> [1, 2, 3]' * [2 -3 -1]

ans =

2    -3    -1
4    -6    -2
6    -9    -3

row x column

column x row



solving linear systems A x = b
Linear equations have a very large number of applications 
in engineering, science, social sciences and economics
Linear Programming – Management Science
Computer Aided Design – aerodynamics of cars, planes
Signal Processing in Communications and Control, 
Radar, Sonar, Electromagnetics, Oil Exploration, 
Computer Vision, Pattern & Face Recognition
Chip Design – millions of transistors
Economic Models, Finance, Statistical Models, 
Data Mining, Social Models
Markov Models – speech, biology, Google pagerank 
Scientific Computing – solving very large problems



solving linear systems

always use the backslash operator to 
solve a linear system, instead of inv(A)

matrix 
inverse



solving linear systems (using backslash)

>> A = [4 1 2; 1 -1 1; 2 1 1];
>> b = [10 20 10]'; 
>> x = A\b
x =

-30
10
60

>> norm(A*x-b)     % test - should be zero
ans =              % of the order of eps

0



solving linear systems (using inv)

>> A = [4 1 2; 1 -1 1; 2 1 1];
>> b = [10 20 10]'; 
>> inv(A)                % same as A^(-1)
ans =

2    -1    -3
-1     0     2
-3     2     5

>> x = inv(A) * b        % but prefer backslash
x =

-30
10
60



solving linear systems – backslash and forwardslash

A of size NxN and invertible
X of size NxK
B of size NxK

AX = B -->  X = A\B = inv(A)*B

A of size NxN and invertible
X of size KxN
B of size KxN

XA = B  -->  X = B/A = B*inv(A)

equivalent

equivalent

A          X     =     B =AX B



solving linear systems – least-squares solutions

A of size NxM
x of size Mx1 column
b of size Nx1 column

x = A\b is a solution of Ax=b
in a least-squares sense,
i.e., x minimizes the norm squared:
(Ax-b)'*(Ax-b) = min
x may or may not be unique
depending on whether the linear
system Ax=b is over-determined, 
under-determined, or whether A has
full rank or not 

>> help \
>> help pinv

x = pinv(A)*b;

will be discussed
further in week-11



Invertibility, rank, determinants,
condition number

The inverse inv(A) of an NxN square 
matrix A exists if its determinant is 
non-zero, or, equivalently if it has full rank, 
i.e., its rank is equal to the row or column 
dimension N

a = [1 2 3]'; b = [4 5 6]'; 
A = [a, a+b, b]

A =
1     5     4
2     7     5
3     9     6

>> det(A)

ans =
0

>> rank(A)

ans =
2

>> doc inv
>> doc det
>> doc rank
>> doc cond

det(A) = 0



Invertibility, rank, determinants, condition number

The larger the cond(A) the more ill-conditioned the linear 
system, and the less reliable the solution.

A = [1,  5,         4
2,  7 + 1e-8,  5
3,  9,         6];

>> cond(A)
ans =
3.3227e+009

A\[1; 2; 3]

ans =
1
0
0

A\[1.001; 2.0002; 3.000003]

ans = 
30150.999185
-30150.000183
30150.000683

det(A) = -6.0000e-008



Determinant and inverse of a 2x2 matrix



Matrix Exponential Used widely in solving 
linear dynamic systems

>> A = [1 2;3 4];   

>> expm(A)    % matrix exponential
ans =

51.9690   74.7366
112.1048  164.0738

>> exp(A)     % element-wise exponential
ans =

2.7183    7.3891
20.0855   54.5982

>> doc expm
>> doc exp



Vector & Matrix Norms

>> doc normL1, L2, and L∞ norms of a vector

can also be defined 
for matrices

L1 norm

Euclidean, L2 norm



x = [1, -4, 5, 3]; p = inf;

switch p
case 1

N = sum(abs(x));            % N = norm(x,1);
case 2 

N = sqrt(sum(abs(x).^2));   % N = norm(x,2);
case inf

N = max(abs(x));            % N = norm(x,inf);
otherwise

N = sqrt(sum(abs(x).^2));   % N = norm(x,2);
end

useful for comparing two vectors or matrices

>> norm(a-b)    % a,b vectors of same size
>> norm(A-B)    % A,B matrices of same size

equivalent calculation using
the built-in function norm :



dot product

Euclidean distance

a

a  b−

b



R4 = 5Ω

R1 = 10Ω R3 = 15Ω

15ΩR2

V  = 5V3

V  = 7.1 5V V  = 2 15V

I2

I3

I1

Electric Circuits

Kirchhoff’s
Voltage Law



Electric Circuits



A x = b



A = [25, -15, -10; -15, 30, -15; -10, -15, 30]
b = [-7.5; 15; -5]

A =
25   -15   -10
-15    30   -15
-10   -15    30

b =
-7.5000
15.0000
-5.0000

x = A\b

x =
0.5000
1.0000
0.5000



inv(A)

ans =
0.2571    0.2286    0.2000
0.2286    0.2476    0.2000
0.2000    0.2000    0.2000

inv(sym(A)) --> (1/105) * [27   24   21
24   26   21
21   21   21]



Temperature Distribution

T0 T1T3

T2

T4

T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

follows from discretizing
the Laplace equation



T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

A x = b



T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

A x = b

>> A = [ 4 -1 -1  0 
-1  4  0 -1 
-1  0  4 -1 
0 -1 -1  4];   

>> b = [30; 60; 40; 70];

>> x = A\b

x =

20.0000
27.5000
22.5000
30.0000



T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

T = zeros(2,2);  % shape of T
T(:) = x

T =
20.0000   22.5000
27.5000   30.0000

display solution T in a 
rectangular pattern

nodes were numbered in
column order



T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

A x = b

Rules for constructing A and b:

1) main diagonal is 4
2) if nodes i,j are connected, then, -1, otherwise, 0
3)  b(i) is sum of boundary values connected to node i



T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

Iterative Solution

T i, j( )

T i , j( 1 )−

T i, j( 1)− T i, j( 1)+

T i , j( 1 )+

j

iused also to solve 2D
electrostatics problems

convenient for large
number of subdivisions



N=4; M=4;
left=20; right=30; up=10; dn=40;
T(1,:) = repmat(up,1,M);   T(N,:) = repmat(dn,1,M);
T(:,1) = repmat(left,N,1); T(:,M) = repmat(right,N,1);

Tnew = T;

tol = 1e-4; K = 100; 
for k=1:K,

for i=2:N-1,
for j=2:M-1,

Tnew(i,j) = (T(i-1,j) + T(i+1,j) +...
T(i,j-1) + T(i,j+1))/4;

end
end
if norm(Tnew-T) < tol, break; end
T = Tnew;  

end

T(1,[1,end]) = nan; T(end,[1,end]) = nan;

iterate over internal nodes only

boundary values



T =                            % start-up
NaN    10    10   NaN
20     0     0    30
20     0     0    30
NaN    40    40   NaN

% converged after k = 19 iterations
% to within the specified tol = 1e-4

T =
NaN   10.0000   10.0000       NaN

20.0000   19.9999   22.4999   30.0000
20.0000   27.4999   29.9999   30.0000

NaN   40.0000   40.0000       NaN



T =         % after k=1 iteration
NaN   10.0000   10.0000       NaN

20.0000    7.5000   10.0000   30.0000
20.0000   15.0000   17.5000   30.0000

NaN   40.0000   40.0000       NaN

T =         % after k=2 iterations
NaN   10.0000   10.0000       NaN

20.0000   13.7500   16.2500   30.0000
20.0000   21.2500   23.7500   30.0000

NaN   40.0000   40.0000       NaN

T =         % after k=3 iterations
NaN   10.0000   10.0000       NaN

20.0000   16.8750   19.3750   30.0000
20.0000   24.3750   26.8750   30.0000

NaN   40.0000   40.0000       NaN



0
10

20
30

0

10

20

30
0

20

40

60

temperature distribution

N=30; M=30;
left=0; right=0; up=0; dn=60;
tol = 1e-6; K = 5000; 

% breaks out at k = 2475

[X,Y] = meshgrid(2:M-1, 2:N-1);

Z = T(2:M-1, 2:N-1); 
surf(X,Y,Z);


	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

