
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 8

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output processing (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

Matrix Algebra

• dot product
• matrix-vector multiplication
• matrix-matrix multiplication
• matrix inverse
• solving linear systems
• least-squares solutions
• determinant, rank, condition number
• vector & matrix norms
• examples
• electric circuits
• temperature distributions

The dot product is the basic operation in
matrix-vector and matrix-matrix multiplications

Operators and Expressions

operation element-wise matrix-wise

addition + +
subtraction - -
multiplication .* *
division ./ /
left division .\ \
exponentiation .^ ^

transpose w/o complex conjugation .'
transpose with complex conjugation '

>> help /
>> help precedence

used in matrix
algebra operations

>> A = [1 2; 3 4]
A =

1 2
3 4

>> [A, A.^2; A^2, A*A] % form sub-blocks
ans =

1 2 1 4
3 4 9 16
7 10 7 10 % note A^2 = A*A

15 22 15 22

>> B = 10.^A;
>> [B, log10(B)]
ans =

10 100 1 2
1000 10000 3 4

>> A = [1 2 3; 2 0 4; 0 8 5]
A =

1 2 3
2 0 4
0 8 5

>> size(A) % [N,M] = size(A), NxM matrix
ans =

3 3

matrix indexing
convention

math
notations

MATLAB
notation

dot product

a, b must have the same
dimension

math
notations

MATLAB
notation

dot product
for complex-valued vectors

complex-conjugate transpose,
or, hermitian conjugate of a

for real-valued vectors, the
operations ' and .'
are equivalent

>> a = [1; 2; -3]; b = [4; -5; 2];
>> a'*b
ans =

-12
>> dot(a,b) % built-in function
ans = % same as sum(a.*b)

-12

matrix-vector multiplication

combine three dot product
operations into a single
matrix-vector multiplication

matrix-vector multiplication

combine three dot product
operations into a single
matrix-vector multiplication

A x = b

matrix-matrix multiplication

combine three matrix-vector
multiplications into a single
matrix-matrix multiplication

>> A = [4 1 2; 1 -1 1; 2 1 1]
A =

4 1 2
1 -1 1
2 1 1

>> B = [5 -1 -3; -4 3 1; -7 2 6]
B =

5 -1 -3
-4 3 1
-7 2 6

>> C = A*B
C =

2 3 1
2 -2 2
-1 3 1

C(i,j) is the dot product of i-th row of A with j-th column of B

note:
A*B ≠ B*A

Rule of thumb:

(NxK)x(KxM) --> NxM

A is NxK
B is KxM
then, A*B is NxM

vector-vector multiplication

(1x3)x(3x1) --> 1x1 = scalar

(3x1)x(1x3) --> 3x3

vector-vector multiplication

>> [1, 2, 3] * [2 -3 -1]'

ans =

-7

>> [1, 2, 3]' * [2 -3 -1]

ans =

2 -3 -1
4 -6 -2
6 -9 -3

row x column

column x row

solving linear systems A x = b
Linear equations have a very large number of applications
in engineering, science, social sciences and economics
Linear Programming – Management Science
Computer Aided Design – aerodynamics of cars, planes
Signal Processing in Communications and Control,
Radar, Sonar, Electromagnetics, Oil Exploration,
Computer Vision, Pattern & Face Recognition
Chip Design – millions of transistors
Economic Models, Finance, Statistical Models,
Data Mining, Social Models
Markov Models – speech, biology, Google pagerank
Scientific Computing – solving very large problems

solving linear systems

always use the backslash operator to
solve a linear system, instead of inv(A)

matrix
inverse

solving linear systems (using backslash)

>> A = [4 1 2; 1 -1 1; 2 1 1];
>> b = [10 20 10]';
>> x = A\b
x =

-30
10
60

>> norm(A*x-b) % test - should be zero
ans = % of the order of eps

0

solving linear systems (using inv)

>> A = [4 1 2; 1 -1 1; 2 1 1];
>> b = [10 20 10]';
>> inv(A) % same as A^(-1)
ans =

2 -1 -3
-1 0 2
-3 2 5

>> x = inv(A) * b % but prefer backslash
x =

-30
10
60

solving linear systems – backslash and forwardslash

A of size NxN and invertible
X of size NxK
B of size NxK

AX = B --> X = A\B = inv(A)*B

A of size NxN and invertible
X of size KxN
B of size KxN

XA = B --> X = B/A = B*inv(A)

equivalent

equivalent

A X = B =AX B

solving linear systems – least-squares solutions

A of size NxM
x of size Mx1 column
b of size Nx1 column

x = A\b is a solution of Ax=b
in a least-squares sense,
i.e., x minimizes the norm squared:
(Ax-b)'*(Ax-b) = min
x may or may not be unique
depending on whether the linear
system Ax=b is over-determined,
under-determined, or whether A has
full rank or not

>> help \
>> help pinv

x = pinv(A)*b;

will be discussed
further in week-11

Invertibility, rank, determinants,
condition number

The inverse inv(A) of an NxN square
matrix A exists if its determinant is
non-zero, or, equivalently if it has full rank,
i.e., its rank is equal to the row or column
dimension N

a = [1 2 3]'; b = [4 5 6]';
A = [a, a+b, b]

A =
1 5 4
2 7 5
3 9 6

>> det(A)

ans =
0

>> rank(A)

ans =
2

>> doc inv
>> doc det
>> doc rank
>> doc cond

det(A) = 0

Invertibility, rank, determinants, condition number

The larger the cond(A) the more ill-conditioned the linear
system, and the less reliable the solution.

A = [1, 5, 4
2, 7 + 1e-8, 5
3, 9, 6];

>> cond(A)
ans =
3.3227e+009

A\[1; 2; 3]

ans =
1
0
0

A\[1.001; 2.0002; 3.000003]

ans =
30150.999185
-30150.000183
30150.000683

det(A) = -6.0000e-008

Determinant and inverse of a 2x2 matrix

Matrix Exponential Used widely in solving
linear dynamic systems

>> A = [1 2;3 4];

>> expm(A) % matrix exponential
ans =

51.9690 74.7366
112.1048 164.0738

>> exp(A) % element-wise exponential
ans =

2.7183 7.3891
20.0855 54.5982

>> doc expm
>> doc exp

Vector & Matrix Norms

>> doc normL1, L2, and L∞ norms of a vector

can also be defined
for matrices

L1 norm

Euclidean, L2 norm

x = [1, -4, 5, 3]; p = inf;

switch p
case 1

N = sum(abs(x)); % N = norm(x,1);
case 2

N = sqrt(sum(abs(x).^2)); % N = norm(x,2);
case inf

N = max(abs(x)); % N = norm(x,inf);
otherwise

N = sqrt(sum(abs(x).^2)); % N = norm(x,2);
end

useful for comparing two vectors or matrices

>> norm(a-b) % a,b vectors of same size
>> norm(A-B) % A,B matrices of same size

equivalent calculation using
the built-in function norm :

dot product

Euclidean distance

a

a b−

b

R4 = 5Ω

R1 = 10Ω R3 = 15Ω

15ΩR2

V = 5V3

V = 7.1 5V V = 2 15V

I2

I3

I1

Electric Circuits

Kirchhoff’s
Voltage Law

Electric Circuits

A x = b

A = [25, -15, -10; -15, 30, -15; -10, -15, 30]
b = [-7.5; 15; -5]

A =
25 -15 -10
-15 30 -15
-10 -15 30

b =
-7.5000
15.0000
-5.0000

x = A\b

x =
0.5000
1.0000
0.5000

inv(A)

ans =
0.2571 0.2286 0.2000
0.2286 0.2476 0.2000
0.2000 0.2000 0.2000

inv(sym(A)) --> (1/105) * [27 24 21
24 26 21
21 21 21]

Temperature Distribution

T0 T1T3

T2

T4

T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

follows from discretizing
the Laplace equation

T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

A x = b

T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

A x = b

>> A = [4 -1 -1 0
-1 4 0 -1
-1 0 4 -1
0 -1 -1 4];

>> b = [30; 60; 40; 70];

>> x = A\b

x =

20.0000
27.5000
22.5000
30.0000

T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

T = zeros(2,2); % shape of T
T(:) = x

T =
20.0000 22.5000
27.5000 30.0000

display solution T in a
rectangular pattern

nodes were numbered in
column order

T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

A x = b

Rules for constructing A and b:

1) main diagonal is 4
2) if nodes i,j are connected, then, -1, otherwise, 0
3) b(i) is sum of boundary values connected to node i

T3

T2 T4

T1
20o 30o

30o

10o

40o

10o

40o

20o

Iterative Solution

T i, j()

T i , j(1)−

T i, j(1)− T i, j(1)+

T i , j(1)+

j

iused also to solve 2D
electrostatics problems

convenient for large
number of subdivisions

N=4; M=4;
left=20; right=30; up=10; dn=40;
T(1,:) = repmat(up,1,M); T(N,:) = repmat(dn,1,M);
T(:,1) = repmat(left,N,1); T(:,M) = repmat(right,N,1);

Tnew = T;

tol = 1e-4; K = 100;
for k=1:K,

for i=2:N-1,
for j=2:M-1,

Tnew(i,j) = (T(i-1,j) + T(i+1,j) +...
T(i,j-1) + T(i,j+1))/4;

end
end
if norm(Tnew-T) < tol, break; end
T = Tnew;

end

T(1,[1,end]) = nan; T(end,[1,end]) = nan;

iterate over internal nodes only

boundary values

T = % start-up
NaN 10 10 NaN
20 0 0 30
20 0 0 30
NaN 40 40 NaN

% converged after k = 19 iterations
% to within the specified tol = 1e-4

T =
NaN 10.0000 10.0000 NaN

20.0000 19.9999 22.4999 30.0000
20.0000 27.4999 29.9999 30.0000

NaN 40.0000 40.0000 NaN

T = % after k=1 iteration
NaN 10.0000 10.0000 NaN

20.0000 7.5000 10.0000 30.0000
20.0000 15.0000 17.5000 30.0000

NaN 40.0000 40.0000 NaN

T = % after k=2 iterations
NaN 10.0000 10.0000 NaN

20.0000 13.7500 16.2500 30.0000
20.0000 21.2500 23.7500 30.0000

NaN 40.0000 40.0000 NaN

T = % after k=3 iterations
NaN 10.0000 10.0000 NaN

20.0000 16.8750 19.3750 30.0000
20.0000 24.3750 26.8750 30.0000

NaN 40.0000 40.0000 NaN

0
10

20
30

0

10

20

30
0

20

40

60

temperature distribution

N=30; M=30;
left=0; right=0; up=0; dn=60;
tol = 1e-6; K = 5000;

% breaks out at k = 2475

[X,Y] = meshgrid(2:M-1, 2:N-1);

Z = T(2:M-1, 2:N-1);
surf(X,Y,Z);

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

