Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department
orfanidi@ece.rutgers.edu

week 8

———m Week
— | Week

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting — 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output processing (ch. 7)
7 - Program flow control & relational operators (ch. 8)
8 - Matrix algebra — solving linear equations (ch. 9)
Week 9 - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods — data fitting (ch. 12)
Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

Matrix Algebra

o dot product

e matrix-vector multiplication
e maitrix-matrix multiplication
e matrix inverse

e solving linear systems

* least-squares solutions

o determinant, rank, condition number
e vector & matrix norms

e examples

 electric circuits

e temperature distributions

The dot product is the basic operation in
matrix-vector and matrix-matrix multiplications

Operators and Expressions

operation element-wise matrix-wise
addition + +
subtraction - -
multiplication e *
division ./ /

left division -\ \
exponentiation N N
transpose w/o complex conjugation .’
transpose with complex conjugation

>> help / used in matrix
>> help precedence algebra operations

>> A = [1 2; 3 4]
A =

1 2
3 4

>> [A, A."2: AN2, A*A]
ans =

>> B = 10.7A;
>> [B, logl0(B)]

ans =
10 100
1000 10000

B:

10t
103

% form sub-blocks

% note AN2 = A*A

10?
104

A~ N

1
3

— j-th column

A Az Az
A= {421 Ao &423] i . .
A3y Az Ass matrix indexing
i-throw | PO convention
Ai))
> A =1]J1 2 3; 20 4; 08 5]
A =
1 2 3
2 0] 4
0 8)
>> si1ze(A) % [N,M] = size(A), NxM matrix
ans =

3 3

25 bl
a=|da>|, b=|by a, b must have the same
dimension
i3 bg
b,
aTb = [al, asy, ag] b2 — albl + azbz + a3b3
bs

alb=a'b=a-b=a.xb

NS |

math MATLAB
notations notation

complex-conjugate transpose,

or, hermitian conjugate of a

a'b

= lay, ay, a;]

alb=a'b=a xb

|

|

math
notations

MATLAB
notation

b>
b3

bl

dot product
for complex-valued vectors

= ai“bl + Q;bz + a;kbg

for real-valued vectors, the
operations " and .

are equivalent

1 4
a= 21, b=]-5
—3 2
4
11,2, =3]|-5|=1%X4+2X (=5)+(-3)x2=-12
2
>> a = [1; 2; -3]; b = [4; -5; 2];
>> a"*b
ans =
-12

>> dot(a,b)
ans =
-12

% burlt-1n function
% same as sum(a.*b)

matrix-vector multiplication

14, 1, 2]

|1, —1, 1]

12, 1, 1]

combine three dot product
operations into a single
matrix-vector multiplication

|

4 1 2 D 2
I =1 1]]|-4]|= 2
2 1 1||—7 —1

matrix-vector multiplication

dyp di» di3 X1
1 dpp> d»?3 X2
31 d3p d33 X3

combine three dot product
operations into a single

/ matrix-vector multiplication

A11X1 + d12Xp + d13X3 b,
= | d21X1 + d22X2 + d23X3 | = | by
d31X] + d32Xp + d33X3 b

5 2
4= 2
—7 ~1

~1 3
3| = | -2
2 3

—3 1
1| =|2
6 1

[5 -1 -3
4 3 1

matrix-matrix multiplication

combine three matrix-vector
multiplications into a single
matrix-matrix multiplication

|
w N W
— P =

>S>A=[412:1-11;211]
A =

4 1 2
1 -1 1
2 1 1

> B =[5 -1 -3; -4 31; -7 2 6]}

) -1 -3
-4 3 1
—7 2 6
>> C = A*B
C =
2 1

note:
A*B # B*A

ayjyp dj» b, by
dr1 dp? b>1 b

diby1 + ayboy |aby

do by, + a»ob,, |a» b,

Rule of thumb:
(NXK)X(KXM) --> NxM
A 1s NxK

B 1S KxM
then, A*B 1s NxM

vector-vector multiplication

bl
lay, a», asz]| b2 | = aib, + a>b, + asb;
—b?’— (1x3)x(3x1) --> 1x1 =scalar
_Ql _Glbl leg albg_
a | [by, by, b3]= | axb, axb, a;bs
as asb, asb, asbs;

(3x1)x(1x3) --> 3x3

vector-vector multiplication

>>[1, 2, 3] * [2 -3 -11° «— row x column
ans =

-7
>> [1, 2, 3] * [2 -3 -11 «— column x row
ans =

2 -3 -1

4 -6 -2

6 -9 -3

solving linear systems

Linear equations have a very large number of applications
In engineering, science, social sciences and economics

Linear Programming — Management Science
Computer Aided Design — aerodynamics of cars, planes

Signal Processing in Communications and Control,
Radar, Sonar, Electromagnetics, Oil Exploration,
Computer Vision, Pattern & Face Recognition

Chip Design — millions of transistors

Economic Models, Finance, Statistical Models,
Data Mining, Social Models

Markov Models — speech, biology, Google pagerank
Scientific Computing — solving very large problems

solving linear systems

4X1 + Xo + 2X3 =10 _4 1 2_ _Xl_ _10_
X1 — X» + X3 =20 = 1 —1 1 Xo | =120
2X1 +Xo+Xx3 =10 _2 1 1_ _XB_ _10_
matrix Ax=Db

Inverse

A4

Ax=b = x=A"1b=A\b

always use the backslash operator to
solve a linear system, instead of 1Inv(A)

solving linear systems (using backslash)

4X1 + Xo + 2X3 =10 _4 1 2_ _Xl_ _10_
X1 — X» + X3 =20 = 1 —1 1 Xo | =120
2X1 +Xo+Xx3 =10 L 1 | | _XB_ _10_

> A=[412;1-11; 21 1];
>> b = [10 20 10]°";
>> X = A\Db
X =
-30
10
60
>> norm(A*x-b) % test - should be zero
ans = % of the order of eps

O

solving linear systems (using inv)

4X1 + X»o + 2X3 — 10 _4 1 2_ _Xl_ _10_
X1 — Xo>+ X3 =20 = 1 —1 1 Xo | =120
2X1 +X>+Xx3=10 _2 1 1_ _XB_ _10_

> A=10412;1-11; 21 1];
>> p = [10 20 10]°;
>> Inv(A) % same as AN(-1)
ans =

2 -1 -3

-1 0 2

-3 2 5
>> X = 1nv(A) * b % but prefer backslash
X =

-30
10

solving linear systems — backslash and forwardslash

A of size NxXN and invertible
X of size NxK
B of size NxK

equivalent

|
AX = B --> X = A\B = inv(A)*B

A of size NxN and invertible
X of size KxN
B of size KxN

equivalent

|
XA =B --> X = B/A = B*inv(A)

A || X]|=|B X A | =

solving linear systems — least-squares solutions

A of size NxM

x of size Mx1 column will be discussed

further in week-11

b of size Nx1 column

« = A\b . |isasolution of AX=Db

In a least-squares sense,
1.e., X minimizes the norm squared:

(Ax-b) "*(Ax-b) =min
x = pinv(A)*b; | | X may or may not be unique
depending on whether the linear

>> help \ system AX=Db is over-determined,
>> help pinv under-determined, or whether A has

full rank or not

Invertibility, rank, determinants,

condition number

The inverse 1NV (A) of an NXN square >> doc inv
matrix A exists if its determinant is >> doc det
non-zero, or, equivalently if it has full rank, >> doc rank
l.e., Its rank is equal to the row or column >> doc cond
dimension N
a=1[123]"; b=1]45 6]"; >> det(A)
A = [a, atb, b] ans =
0
A =
1 5 4
>>
; - 5 rank(A)
3 9 6 ans =
2
det(A) =0

Invertibility, rank, determinants, condition number

The larger the cond (A) the more ill-conditioned the linear
system, and the less reliable the solution.

A =11, 5, 4 >> cond(A)

2, [+ l1le-8, 5 ans =

3, 9, 6]; 3.3227e+009
A\[1; 2; 3] A\[1.001; 2.0002; 3.000003]
ans = ans =

1 30150.999185

O -30150.000183

O 30150.000683
det(A) = -6.0000e-008

Determinant and inverse of a 2x2 matrix

Matrix Exponential Used widely In solving
linear dynamic systems

oo
A" A% A
exp(A) =Y o =1+ A+ o+ ot
n=0
~ _ _ A |12
>> expm(A) % matrix exponential
ans =
51.9690 74.7366
112.1048 164.0738
>> exp(A) % element-wise exponential

ans =

2.7183 7.3891 >> doc expm
20.0855 54 .5982 >> doc exp

Vector & Matrix Norms

L., L,, and L_, norms of a vector

>> doc norm

X = [x1, X xn] can also be defined
Ly 22 y AN for matrices
N
Il = > Ixal L, norm
n=1
N
Ixll2 = \ > |xnl? «~— Euclidean, L, norm
n=1

X =[1, -4, 5, 3]; p = iInf;
equivalent calculation using

switch p the built-in function norm :
case 1 l
N = sum(abs(x)); % N = norm(x,1);
case 2
N = sgrt(sum(abs(x)-"2)); % N = norm(x,2);
case iInf
N = max(abs(x)); % N = norm(x, inf);
otherwise
N = sgrt(sum(abs(x)-"2)); % N = norm(x,2);
end
useful for comparing two vectors or matrices
>> norm(a-b) % a,b vectors of same size

>> norm(A-B) % A,B matrices of same size

aj b,
a=|a»|, b=|bo
as b

|la — bl||>» = norm(a—b)

a—>b

=\ (@) = b1)2+(as — by) 2+ (a3 — b3)?

—\/a— "(a—b)
T

dot product

Euclidean distance

V3= 5V

Ry =50
Electric Circuits — WA .

|
3
Ry =10Q Ry =15Q
W W
- " -
Lt R s (1t G
V]_: 7.5V V2 = 15V

Ri(Iy —I3)+R,(I; —I,)+V; =0

Kirchhoff’s

Voltage Law| R2U2—=1I1)+R3(2 —1I3)=V2 =0

R;LIg -I-Rg([g —Ig)-I-Rl(Ig —Il)-I—Vg =0

Electric Circuits

(Ri + R2)I, — RoI, — R I3 = -V,
—RoI1 + (R + R3)I2 — R3l3 =V
—R1[1 — Rg[z -+ (Rl +R3 +R4)Ig = —Vg

_Rl -I—Rg —Rg —Rl Il —Vl
—R> R> + R3 —R3 I | = Vo
—R1 —Rg R1 -I—Rg -|—R4 13 —Vg

R, =10, R>» =15,
Vi=7.5, Vo=15,

_Rl + R> —R> — R, _ _Il_
—Rg Rg +R3 —Rg Ig
—R1 —Rg R1 -I—Rg -|—R4 13

25 —15 10|, |-75
—15 30 =15||I>]| = 15
—10 =15 30| | I3 -5
SO/
AX=D

R3 =15,
V3 =10

Ry=5

o >

25 -15
-15 30
-10 -15

-/ .5000
15.0000
-5.0000

= A\b

0.5000
1.0000
0.5000

-10
-15
30

_Il

X = Ié

I3

[25, -15, -10; -15, 30, -15; -10, -15, 30]
[-7.5; 15; -5]

0.5
1.0
0.5

inv(A)

ans =

0.2571 0.2286 0.2000
0.2286 0.2476 0.2000
0.2000 0.2000 0.2000

inv(sym(A)) --> (1/105) * [27

=A'b=—
X 105

24
21

027 24 21| =7.5
24 26 21 15

21 21 21 —5

24
26
21

0.5
1.0
0.5

21
21
217

Temperature Distribution

T{):%(T1+T2+T3+T4)

follows from discretizing V2T = 0°T ﬂ -0

the Laplace equation ox2 0y?2

® [
T i(1(1 +204+T» +T1)
4
T T3 8 200 1
30 Ty = (20 + 40+ Ty + T3)
1
TZ. T4. @ 300° T3 1(104—304—]“[+ T4)
T4 i{3[l+4[]+]ﬂ)—l—]ﬁ;)
s -
40 40 /
4Ty —T>— T3 = 30 i 4 -1 -1 D_ _Tl_ _30_

4T =T, —T4=60 |——| =1 0 4 —1||Ts| |40

4T —T1— T4 =40 _ 1 L=

4Ty —T»—-T3 =70 \ T_ /

>> A

I
=

1 O
0 -1
4 -1 20.0000
1 4]; 27 .5000
O; 40; 70]; 22 .5000
30.0000

-1
A
0

-1

. 6

>> P

I
—
W
o

. display solution T in a
30 rectangular pattern

nodes were numbered In
column order

T = zeros(2,2); % shape of T
T(:) =X

T =
20.0000 22 .5000
27.5000 30.0000

Rules for constructing A and b:

1) main diagonal Is 4
2) If nodes 1,J are connected, then, -1, otherwise, 0
3) b(i) Is sum of boundary values connected to node |

40° 40°

used also to solve 2D
electrostatics problems

Iterative Solution

convenient for large
number of subdivisions

T0-1,0) »]

T,]-1) @

'y

e
T@,))

® 1(i,)+1)

O
T(1+1,)

T(i,j)= %[T(i +1,)+T(i—-1,)+T(,j+1)+T(i,j—1)]|

N=4; M=4,;
left=20; right=30; up=10; dn=40;

boundary values

T(1,:) = repmat(up,1,M); T(N,:) = repmat(dn,1,M);
T(:,1) = repmat(left,N,1); T(:,M) = repmat(right,N,1);
Thew = T;
tol = 1le-4; K = 100;
— for k=1:K,
—for 1=2:N-1, . iterate over internal nodes only
—for J=2:M-1,
Tnew(i,3) = (T(i-1,3) + T(i+l,3) +...
T(r,3-1) + T(1,3+1))74;
_end
- end
1T norm(Tnew-T) < tol, break; end
T = Thew;

— end
T(1,[1,end]) = nan; T(end,[1l,end]) = nan;

T =
NaN 10 10 NaN
20 O O 30
20 O O 30
NaN 40 40 NaN

% start-up

% converged after k = 19 i1terations
% to within the specified tol = le-4

T =
NaN 10.0000 10.0000 NaN
20.0000 19.9999 22.4999 30.0000
20.0000 27.4999 29.9999 30.0000
NaN 40.0000 40.0000 NaN

20.
20.

20.
20.

20.
20.

NaN
0000
0000

NaN

NaN
0000
0000

NaN

NaN
0000
0000

NaN

% after k=1 i1teration

10.0000
/7 .5000
15.0000
40.0000

% after k=2

10.0000
13.7500
21.2500
40.0000

% after k=3

10.0000
16.8750
24 _3750
40.0000

10.0000
10.0000 30.
17 .5000 30.
40.0000
1terations
10.0000
16.2500 30.
23.7500 30.
40.0000
1terations
10.0000
19.3750 30.
26.8750 30.

40.0000

NaN
0000
0000

NaN

NaN
0000
0000

NaN

NaN
0000
0000

NaN

N=30; M=30;
left=0; right=0; up=0; dn=60;
tol = le-6; K = 5000;

% breaks out at k = 2475
[X,Y] = meshgrid(2:M-1, 2:N-1);

Z = T(Z “M-1 L) 2-N- 1) ’ temperature distribution
surf(X,Y,2); —

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

