
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 9

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output processing (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

Strings, Structures, Cells

• characters and strings
• concatenating strings
• using num2str
• comparing strings with strcmp
• structure arrays
• converting structures to cells
• cell arrays
• cell vs. content indexing
• varargin, varargout
• multi-dimensional arrays

MATLAB Data Classes

Character

Floating Point

single
precision

double
precision

Logical Numeric Symbolic Cell Structure

More Classes Cell and Structure arrays
can store different types
of data in the same array

Integer

signed unsigned

Java
classes

function
handles

user-defined
classes

Characters and Strings Strings are arrays of characters.

Characters are represented internally
by standardized numbers, referred to
as ASCII (American Standard Code
for Information Interchange) codes.
see Wikipedia link: ASCII table

>> c = 'A'
c =
A

>> x = double(c)
x =

65 % ASCII code for 'A'

>> char(x)
ans =
A

>> class(c)
ans =
char

char() creates a character string

>> doc char
>> doc class

http://en.wikipedia.org/wiki/ASCII

s is a row vector of 8 characters

>> s = 'ABC DEFG'
s =
ABC DEFG

>> x = double(s)
x =

65 66 67 32 68 69 70 71

>> char(x)
ans =
ABC DEFG

>> size(s)
ans =

1 8
>> class(s)
ans =
char

ASCII codes

convert ASCII codes to characters

>> s(2), s(3:5)
ans =
B
ans =
C D

Concatenating Strings

s = ['Albert', 'Einstein']
s =
AlbertEinstein

>> s = ['Albert', ' Einstein']
s =
Albert Einstein

>> s = ['Albert ', 'Einstein']
s =
Albert Einstein

>> size(s)
ans =

1 15

preserve leading and trailing spaces

>> doc strcat
>> doc strvcat
>> doc num2str
>> doc strcmp
>> doc findstr

Concatenating Strings

s = strcat('Albert ', 'Einstein')
s =
AlbertEinstein

>> s = strcat('Albert', ' Einstein')
s =
Albert Einstein

>> fmt = strcat(repmat('%8.3f ',1,6),'\n')
fmt =
%8.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n

strcat strips trailing spaces
but not leading spaces

use repmat to make up long format
strings for use with fprintf

Concatenating Vertically

s = ['Apple'; 'IBM'; 'Microsoft'];

??? Error using ==> vertcat
CAT arguments dimensions are not consistent.

s = ['Apple '; 'IBM '; 'Microsoft']

s =
Apple
IBM
Microsoft

>> size(s)
ans =

3 9

padded with spaces to the
length of the longest string

strvcat,char
both pad spaces as necessary

s = strvcat('Apple', 'IBM', 'Microsoft');

s = char('Apple', 'IBM', 'Microsoft');

s =
Apple
IBM
Microsoft

>> size(s)
ans =

3 9

Concatenating Vertically

Recommendation: use char to
concatenate vertically, and
[] to concatenate horizontally

s = num2str(A)
s = num2str(A, precision)
s = num2str(A, format)

num2stra = [143.87, -0.0000325, -7545]';

>> s = num2str(a)
s =

143.87
-3.25e-005

-7545
>> s = num2str(a,4)
s =

143.9
-3.25e-005

-7545
>> s = num2str(a, '%12.6f')
s =

143.870000
-0.000032

-7545.000000

max number of digits

num2str
a = [143.87, -0.0000325, -7545]';

>> s = num2str(a, '%10.5E')
s =
1.43870E+002

-3.25000E-005
-7.54500E+003

b = char('A', 'BB', 'CCC');

>> disp([b, repmat(' ',3,1), s])
A 1.43870E+002
BB -3.25000E-005
CCC -7.54500E+003

0 5
-1

0

1
sin(2t)

0 5
-1

0

1
sin(5t)

0 5
-1

0

1
sin(8t)

0 5
-1

0

1
sin(10t)

Labeling and saving
multiple plots with
num2str

saved as
file1.eps, file2.eps
file3.eps, file4.eps

t = linspace(0,5,101); w = [2,5,8,10];
Y = sin(w'*t); % 4x101 matrix
s = char('b-', 'r-', 'm-', 'g-');
for i=1:4,

figure; plot(t,Y(i,:), s(i,:));
title(['sin(', num2str(w(i)), 't)']);
print('-depsc', ['file',num2str(i),'.eps']);

end

Comparing Strings Strings are arrays of characters, so
the condition s1==s2 requires both
s1 and s2 to have the same length

>> s1 = 'short'; s2 = 'shore';
>> s1==s1
ans =

1 1 1 1 1

>> s1==s2
ans =

1 1 1 1 0

>> s1 = 'short'; s2 = 'long';
>> s1==s2
??? Error using ==> eq
Matrix dimensions must agree.

Comparing Strings

>> doc strcmp
>> doc strcmpi

Use strcmp to compare
strings of unequal length,
and get a binary decision

>> s1 = 'short'; s2 = 'shore';
>> strcmp(s1,s1)
ans =

1

>> strcmp(s1,s2)
ans =

0

>> s1 = 'short'; s2 = 'long';
>> strcmp(s1,s2)
ans =

0

case-insensitive

Useful String Functions

sprintf - write formatted string
sscanf - read formatted string
deblank - remove trailing blanks
strcmp - compare strings
strcmpi - compare strings
strmatch - find possible matches
upper - convert to upper case
lower - convert to lower case
blanks - string of blanks
strjust - left/right/center justify string
strtrim - remove leading/trailing spaces
strrep - replace strings
findstr - find one string within another

Structures Structures have named ‘fields’ that can
store all kinds of data: vectors, matrices,
strings, cell arrays, other structures

student.name = 'Apple, A.'; % string
student.id = 12345; % number
student.exams = [85, 87, 90]; % vector
student.grades = {'B+', 'B+', 'A'}; % cell

name.field

>> student
student =

name: 'Apple, A.'
id: 12345

exams: [85 87 90]
grades: {'B+' 'B+' 'A'}

>> class(student)
ans =
struct

structures can
also be created
with struct()

Structure Arrays

student(2).name = 'Twitter, T.';
student(3).id = 345678;

add two more students with
partially defined fields,
rest of fields are still empty

>> student
student =
1x3 struct array with fields:

name
id
exams
grades

structure array index

Structure Arrays

>> student(1)
ans =

name: 'Apple, A.'
id: 12345

exams: [85 87 90]
grades: {'B+' 'B+' 'A'}

>> student(3)
ans =

name: []
id: 345678

exams: []
grades: []

>> student(2)
ans =

name: 'Twitter, T.'
id: []

exams: []
grades: []

Structure Arrays

>> student(3).exams = [70 80];

>> student(3)
ans =

name: []
id: 345678

exams: [70 80]
grades: []

the missing field values can be defined later and don’t have
to be of the same type or length as those of the other entries

Accessing Structure Elements

>> student(1)
ans =

name: 'Apple, A.'
id: 12345

exams: [85 87 90]
grades: {'B+' 'B+' 'A'}

>> student(1).name(5) % ans =
% e

>> student(1).exams(2) % ans =
% 87

>> student(1).grades(3) % ans =
% 'A'

>> student(1).grades{3} % ans =
% A

cell vs.
content
indexing

s.a = [1 2; 3 4];
s.b = {'a', 'bb'; 'ccc', 'dddd'};

>> s
s =

a: [2x2 double]
b: {2x2 cell}

>> s.a
ans =

1 2
3 4

>> s.a(2,2)
ans =

4

>> s.b
ans =

'a' 'bb'
'ccc' 'dddd'

>> s.b(2,1), s.b{2,1}
ans =

'ccc'
ans =
ccc

cell vs.
content
indexing

Nested Structures

student.name = 'Apple, A.';
student.id = 12345;
student.work.exams = [85, 87, 90];
student.work.grades = {'B+', 'B+', 'A'};

>> student
student =

name: 'Apple, A.'
id: 12345

work: [1x1 struct]

>> student.work % sub-structure
ans =

exams: [85 87 90]
grades: {'B+' 'B+' 'A'}

Stucture Functions

struct - create structure
fieldnames - get structure field names
isstruct - test if a structure
isfield - test if a field
rmfield - remove a structure field
struct2cell - convert structure to cell array

>> C = struct2cell(student)
C =

'Apple, A.'
[12345]
[1x1 struct]

>> C{3}
ans =

exams: [85 87 90]
grades: {'B+' 'B+' 'A'}

content indexing

Cell Arrays Like structures, cell arrays are containers
of all kinds of data: vectors, matrices, strings,
structures, other cell arrays, functions.

A cell is created by putting different types of
objects in curly brackets { }, e.g.,

c = {A, B, C, D}; % 1x4 cell
c = {A; B; C; D}; % 4x1 cell
c = {A, B; C, D}; % 2x2 cell

where A,B,C,D are arbitrary objects

c{i,j} accesses the data in i,j cell
c(i,j) is the cell in the i,j position

cell vs.
content
indexing

A = {'Apple'; 'IBM'; 'Microsoft'}; % cells
B = [1 2; 3 4]; % matrix
C = @(x) x.^2 + 1; % function
D = [10 20 30 40 50]; % row

c = {A,B;C,D} % define 2x2 cell array

c =
{3x1 cell} [2x2 double]
@(x)x.^2+1 [1x5 double]

>> cellplot(c);

Apple

IBM

Microsoft

A = {'Apple'; 'IBM'; 'Microsoft'}

A =
'Apple'
'IBM'
'Microsoft'

S = char('Apple', 'IBM', 'Microsoft')

S =
Apple
IBM
Microsoft

>> size(A), class(A)
ans =

3 1
ans =
cell

>> size(S), class(S)
ans =

3 9
ans =
char

comparing cell arrays
of strings vs. strings

>> A(2), class(A(2))
ans =

'IBM'
ans =
cell

>> A{2}, class(A{2})
ans =
IBM
ans =
char

>> A'
ans =

'Apple' 'IBM' 'Microsoft'

>> S

Apple
IBM
Microsoft

>> S'

AIM
pBi
pMc
l r
e o
s
o
f
t

cell vs.
content
indexing

A = {'Apple'; 'IBM'; 'Microsoft'}; % cells
B = [1 2; 3 4]; % matrix
C = @(x) x.^2 + 1; % function
D = [10 20 30 40 50]; % row

c = {A,B;C,D} % define 2x2 cell array

c =
{3x1 cell} [2x2 double]
@(x)x.^2+1 [1x5 double]

>> cellplot(c);

Apple

IBM

Microsoft

>> celldisp(c)

c{1,1}{1} =
Apple
c{1,1}{2} =
IBM
c{1,1}{3} =
Microsoft

c{2,1} =
@(x)x.^2+1

c{1,2} =
1 2
3 4

c{2,2} =
10 20 30 40 50

>> c{1,1}
ans =

'Apple'
'IBM'
'Microsoft'

>> c{2,1}
ans =

@(x)x.^2+1

content indexing with { }

0 1 2 3
0

2

4

6

8

10

>> c{1,1}{3}
ans =
Microsoft
>> c{1,1}{3}(6)
ans =
s

>> x = [1 2 3];
>> c{2,1}(x)
ans =

2 5 10

>> fplot(c{2,1},[0,3]);

>> c{1,2}(2,:)
ans =

3 4

>> c{1,2}(1,2)
ans =

2

>> c{2,2}(3)
ans =

30

content indexing with { }

cell indexing ()
content indexing { }

>> c(2,2)
ans =

[1x5 double]

>> class(c(2,2))
ans =
cell

>> c{2,2}
ans =

10 20 30 40 50

>> class(c{2,2})
ans =
double

cell

cell contents

>> c{1,1}(2)
ans =

'IBM'

>> class(c{1,1}(2))
ans =
cell

>> c{1,1}{2}
ans =
IBM

>> class(c{1,1}{2})
ans =
char

cell

cell contents

cell indexing ()
content indexing { }

>> d = c;

>> % d(1,3) = {[4 5 6]'}; % define as cell
>> d{1,3} = [4,5,6]' % define content

d =
{3x1 cell} [2x2 double] [3x1 double]
@(x)x.^2+1 [1x5 double] []

>> d(2,3)
ans =

{[]}

>> d{2,3}
ans =

[]

>> cellplot(d);

Apple

IBM

Microsoft

>> e = reshape(d,3,2)

>> cellplot(e)

>> f = repmat(c,1,2)

>> cellplot(f)

Apple
IBM

Microsoft

Apple
IBM

Microsoft

Apple
IBM

Microsoft

try also
>> f = d';

changing cell
array contents

>> c{1,1}{2} = 'Google';
>> c{1,2} = 10*c{1,2};
>> c{2,2}(3) = 300;
>> celldisp(c)
c{1,1}{1} =
Apple
c{1,1}{2} =
Google
c{1,1}{3} =
Microsoft
c{2,1} =

@(x)x.^2+1
c{1,2} =

10 20
30 40

c{2,2} =
10 20 300 40 50

could have used:
c{1,1}(2) = {'Google'};

why not ?
c(1,2) = 10*c(1,2);

why not ?
c{2,2}{3} = 300;

varargin
varargout

% [x,y,vx,vy] = trajectory(t,v0,th0,h0,g)

function [varargout] = trajectory(t,v0,varargin)

Nin = nargin-2; % number of varargin inputs

if Nin==0, th0=90; h0=0; g=9.81; end
if Nin==1, th0=varargin{1}; h0=0; g=9.81; end
if Nin==2, th0=varargin{1}; ...

h0=varargin{2}; g=9.81; end
if Nin==3, th0=varargin{1}; ...

h0=varargin{2}; g=varargin{3}; end

varargin,varargout are cell arrays that
allow the passing a variable number of function
inputs & outputs

continues

th0 = th0 * pi/180; % convert to radians

x = v0 * cos(th0) * t;
y = h0 + v0 * sin(th0) * t - 1/2 * g * t.^2;
vx = v0 * cos(th0);
vy = v0 * sin(th0) - g * t;

if nargout==1; varargout{1} = x; end
if nargout==2; varargout{1} = x; ...

varargout{2} = y; end
if nargout==3; varargout{1} = x;

varargout{2} = y; ...
varargout{3} = vx; end

if nargout==4; varargout{1} = x; ...
varargout{2} = y; ...
varargout{3} = vx; ...
varargout{4} = vy; end

Multidimensional Arrays

A three-dimensional array is a collection of
two-dimensional matrices of the same size, and
are characterized by triple indexing, e.g.,
A(i,j,p) is the (i,j) matrix element of the p-th matrix.

Higher-dimensional arrays can also be defined, e.g.,
a 4D array is a collection of 3D arrays of the same size.

pages

p
j

i

columns

rows applications in
video processing

>> a = [1 2; 3 4];
>> A(:,:,1) = a;
>> A(:,:,2) = 10*a;
>> A(:,:,3) = 100*a;

>> A
A(:,:,1) =

1 2
3 4

A(:,:,2) =
10 20
30 40

A(:,:,3) =
100 200
300 400

sum, min, max
can operate along the
i,j,p dimensions

pages

>> sum(A,1)
ans(:,:,1) =

4 6
ans(:,:,2) =

40 60
ans(:,:,3) =

400 600

>> sum(A,2)
ans(:,:,1) =

3
7

ans(:,:,2) =
30
70

ans(:,:,3) =
300
700

>> sum(A,3)
ans =

111 222
333 444

A(:,:,1) =
1 2
3 4

A(:,:,2) =
10 20
30 40

A(:,:,3) =
100 200
300 400

>> min(A,[],1)
ans(:,:,1) =

1 2
ans(:,:,2) =

10 20
ans(:,:,3) =

100 200

>> min(A,[],2)
ans(:,:,1) =

1
3

ans(:,:,2) =
10
30

ans(:,:,3) =
100
300

>> min(A,[],3)
ans =

1 2
3 4

A(:,:,1) =
1 2
3 4

A(:,:,2) =
10 20
30 40

A(:,:,3) =
100 200
300 400

>> A>20 & A<300
ans(:,:,1) =

0 0
0 0

ans(:,:,2) =
0 0
1 1

ans(:,:,3) =
1 1
0 0

>> k = find(A>20 & A<300)
k =

6
8
9
11

column-order
across pages

A(:,:,1) =
1 2
3 4

A(:,:,2) =
10 20
30 40

A(:,:,3) =
100 200
300 400

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

