Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department
orfanidi@ece.rutgers.edu

week 9

— | Week 9 - Strings, structures, cell arrays (ch. 10)

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)

Week 4 - Plotting — 2D and 3D plots (ch. 5)

Week 5 - User-defined functions (ch. 6)

Week 6 - Input-output processing (ch. 7)

Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)

Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods — data fitting (ch. 12)
Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

Strings, Structures, Cells

e characters and strings

e concatenating strings

e using num2str

e comparing strings with strcmp

e structure arrays

e converting structures to cells
o cell arrays

« cell vs. content indexing

e varargin, varargout

 multi-dimensional arrays

MATLAB Data Classes

Character || Logical || Numeric || Symbolic Cell Structure
Integer Floating Point
signed | | unsigned | | single double
precision | | precision
More Classes Cell and Structure arrays
Java user-defined || function can store different types
classes || classes handles of data in the same array

OEIE G o Bliglalel | Strings are arrays of characters.

Characters are represented internally

>> Cc = "A° by standardized numbers, referred to

C = as ASCII (American Standard Code

A for Information Interchange) codes.
see Wikipedia link: ASCII table

>> X = double(c)

X =

65 % ASCII code for "A"

>> char(x)

ans = :
A char () creates a character string
>> class(c) >> doc char
ans = >> doc class

char

http://en.wikipedia.org/wiki/ASCII

>> s = "ABC DEFG*

S =
ABC DEFG

>> X = double(s)

X =

65 66 67 32 68 69 70 71 < ASCII codes

>> char(x)
ans =
ABC DEFG

>> si1ze(s)
ans =

1
>> class(s)
ans =
char

38

-«

convert ASCII codes to characters

S IS a row vector of 8 characters

>> 5(2), s(3:5)
ans =

B

ans =

CD

Concatenating Strings

s = ["Albert®, "Einstein”]

S:
AlbertEinstein

>> s = ["Albert”,
S =

" Einstein”]

T

Albert Einstein

preserve leading and trailing spaces

>> s = ["Albert ",
S:
Albert Einsteln

>> size(s)
ans =
1 15

"Einstein”]

strcat
strvcat

num2str

strcmp
findstr

Concatenating Strings

s = strcat("Albert ", "Einsteln®)

S

AlbertEinsteiln strcat strips trailing spaces
but not leading spaces

|
>> s = strcat("Albert™, " Einsteiln®)

S:
Albert Einstein

use repmat to make up long format
strings for use with fprintf

'
>> fmt = strcat(repmat("%8.3F ",1,6),"\n")

fmt =
%8.3F %U8.3F %U8.3F %u8.3F %8.3F %8.3F\n

Concatenating Vertically

s = [“Apple”; "IBM"; “Microsoft"];

??? Error using ==> vertcat
CAT arguments dimensions are not consistent.

s = ["Apple "; "I1BM "; "Microsoft”]
o \ |

Apple

1BM padded with spaces to the

Microsoft length of the longest string

>> size(s) ////
ans =

3 9

Concatenating Vertically

s = strvcat("Apple®, "IBM", "Microsoft®);
s = char("Apple®, "IBM", "Microsoft");

S =

Apple |

1BM | strvcat,char

Microsoft both pad spaces as necessary

>> si1ze(Ss)

ans = Recommendation: use char to
3 9 concatenate vertically, and

[] to concatenate horizontally

a = [143.87, -0.0000325, -7545]":

>> s = num2str(a)

S = S num2str(A)
143 .87 S num2str(A, precision)

-3.25e-005
eac S num2str(A, format)

>> s = num2str(a,4)
S = I
143.9 max number of digits
-3.25e-005
- 7545

>> s = num2str(a, "%12.6F")
S:
143 .870000

-0.000032
- 7545 _000000

a = [143.87, -0.0000325, -7545]";

>> s = num2str(a, "%1l0.5E")
S =
1.43870E+002
-3.25000E-005
-7 .54500E+003

b = char("A", "BB", "CCC");

>> disp([b, repmat(® ",3,1), s])

A 1.43870E+002
BB -3.25000E-005
CCC -7.54500E+003

t = linspace(0,5,101); w = [2,5,8,10];
Y = sin(w"*t); % 4x101 matrix
s = char("b-", "r-", "m-", "g-");
T 1=1:4,

figure; plot(t,Y(i,:), s(i,:));
title(["sin(", num2str(w(i)), "©)"1;
print("-depsc®, ["file" ,num2str(1),".eps”]);

O
1

end . .
sin(2t) sin(5t)
1 1
Labeling and saving 0 0
multiple plots with
num2str 1 = 1 .
sin(8t) sin(10t)

saved as 1 1
Tfilel.eps, File2.eps 0 L0 |
file3.eps, filed.eps

-1 -1

0 5 0 5

Comparing Strings Strings are arrays of characters, so

the condition s1==s2 requires both
sl and s2 to have the same length

>> s]1 = "short"; s2 = "shore”;
>> sl==s]
ans =

1 1 1 1 1

>> gl==s2
ans =
1 1 1 1 0]

>> s]1 = "short"; s2 = "long”;
>> gl==s2

??? Error using ==> eq
Matrix dimensions must agree.

Comparing Strings Use strcmp to compare

strings of unequal length,
and get a binary decision

>> s]1 = "short"; s2
>> strcmp(sl,sl)

ans = >> doc strcmp

1 >> doc strcmpi
>> strcmp(sl,s?2) T
ans =

"shore”;

case-insensitive

O

>> s1 = "short"; s2
>> strcecmp(sl,s2?)
ans =

"long”;

0

Useful String Functions

sprintf
sscanf
deblank
strcmp
strcmpl
strmatch
upper
lower
blanks
strjust
strtrim
strrep
findstr

write formatted string

read formatted string

remove trailing blanks
compare strings

compare strings

find possible matches
convert to upper case

convert to lower case

string of blanks
left/right/center justify string
remove leading/trailing spaces
replace strings

find one string within another

Structures have named ‘fields’ that can
store all kinds of data: vectors, matrices,
strings, cell arrays, other structures

name.field
' '

student.name = "Apple, A."; % string
student.i1d = 12345; % number
student.exams = [85, 87, 90]; % vector
student.grades = {"B+", "B+", "A"}; % cell
>> student >> class(student)
student = ans =
name: "Apple, A." struct
1d: 12345
exams: [85 87 90] structures can
grades: {"B+" "B+" "A"} also be created
with struct()

Structure Arrays

add two more students with
partially defined fields,

structure array index rest of fields are still empty

!

student(2).name = "Twitter, T.%;
student(3).1d = 345678,

>> student
student =
1x3 struct array with fields:
name
id
exams
grades

Structure Arrays

>> student(l)
ans =
name: "Apple, A."
1d: 12345
exams: [85 87 90]

grades: {"B+" "B+" "A"}

>> student(2)

ans =
name: “"Twitter, T.°
1d: []
exams: []

grades: []

>> student(3)

ans =

name:
1d:
exams:
grades:

L]
345678
L]
L]

Structure Arrays

the missing field values can be defined later and don’t have
to be of the same type or length as those of the other entries

>> student(3).exams = [70 80];

>> student(3)
ans =
name: []
1d: 345678
exams: [70 80}
grades: []

Accessing Structure Elements

>> student(l)
ans =
name: "Apple, A."
1d: 12345
exams: [85 87 90]

grades: {"B+" "B+" "A"}

>> student(l) .name(b)
>> student(l).exams(2)
>> student(l) .grades(3)

>> student(l).grades{3}

%
%
%
%
%
%
%
%

ans =

e

ans =
87

ans =
IAI

ans =

A

]

/

cell vs.
content
Indexing

s.a =1[12; 3 4],
s.b = {"a", "bb"; "ccc", "dddd"};
>> g
S =
a-: [2x2 double]
b: {2x2 cell}
>> s.a >> s_.b
ans = ans =
1 2 "a” "bb*
3 4 "ccc” "dddd*
>> s.a(2,2) >> s.b(2,1), s.-b{2,1}
ans = ans =
A "ccc” cell vs.
ans = content
CcCC Indexing

Nested Structures

student.name = "Apple, A.";

student.i1d = 12345;
student.work.exams
student.work.grades

>> student
student =

name: "Apple, A."

1d: 12345

[85, 87, 90];
{*"B+", "B+", "A"};

work: [1x1 struct]

>> student.work
ans =

% sub-structure

exams: [85 87 90]
"B+" "A"}

grades: {"B+"

Stucture Functions

struct — create structure
fieldnames - get structure field names
1Sstruct — test if a structure
istield — testif a field

rmfield — remove a structure field

struct2cell - convert structure to cell array

>> C = struct2cell(student)

content indexing

C =

“Apple, A."

[12345]

[1x1 struct]
>> C{3} —
ans =

exams: [85 87 90]

grades: {"B+"

.B+. .A'}

Like structures, cell arrays are containers Cell Arrays
of all kinds of data: vectors, matrices, strings,

structures, other cell arrays, functions.

A cell is created by putting different types of
objects in curly brackets { }, e.g.,

c = {A, B, C, D}; % 1x4 cell
c = {A; B; C; D}; % 4x1 cell
c = {A, B; C, D}; % 2x2 cell

where A,B,C,D are arbitrary objects

c{1,J} accessesthedatain 1,j cell |cellvs.
c(i,j) isthecellinthe 1,j position |content

Indexing

OO W >

@

{"Apple®; "IBM"; "Microsoft"}; % cells

= [1 2; 3 4]; % matrix
= @(X) x."2 + 1; % function
= [10 20 30 40 50]; % row

{A,B;C,D} % define 2x2 cell array

{3x1 cell} [2x2 double]
@(x)x."2+1 [1x5 double]

Mierosoft

>> cellplot(c); .

A = {"Apple”; "IBM";

"Apple”
"IBM*®
"Microsoft”

comparing cell arrays
of strings vs. strings

S = char("Apple®, "IBM",

S =
Apple
1BM
Microsoft

"Microsoft"}

>> size(A), class(A)
ans =

3 1
ans =
cell
"Microsoft")

>> s1ze(S), class(S)
ans =
3 9
ans =
char

>> A(2), class(A(2))
ans =
"IBM*
ans =
cell

>> A{2}, class(A{2})
ans =

1BM

ans =

char

cell vs.
content
Indexing

>> AT
ans =

"Apple® T"IBM"™ “Microsoft”

>> S

Apple
1BM
Microsoft

OO W >

@

{"Apple®; "IBM"; "Microsoft"}; % cells

= [1 2; 3 4]; % matrix
= @(X) x."2 + 1; % function
= [10 20 30 40 50]; % row

{A,B;C,D} % define 2x2 cell array

{3x1 cell} [2x2 double]
@(x)x."2+1 [1x5 double]

Mierosoft

>> cellplot(c); .

>> celldisp(c)

c{1l,1}{1} =
Apple

c{1,1H{2} =
1BM

c{1,1}{3} =

Microsoft

c{2,1} =
O@(xX)x."N2+1

c{l1l,2} =
1
3

c{2,2} =
10 20

AN

30

40

content indexing with { }

>> c{1,1}

ans =
"Apple”
"IBM*"
"Microsoft”

>> c{2,1}
ans =
(X)X .N2+1

50

>> c{1,1}{3}
ans =

Microsoft

>> c{1,1}{3}(6)
ans =

S

>> x = [1 2 3];
>> ¢{2,1}(x)
ans =
2 5 10

>> fplot(c{2,1},[0,3]);

0

S0 o o

content indexing with { }

>> c{1,2}(2,:)
ans =
3 4

>> c{1,2}(1,2)
ans =
2

>> ¢{2,2}(3)
ans =
30

o> c2.2) «leall cell indexing ()

ans =
[1xX5 double]

content indexing {}

>> class(c(2,2))
ans =
cell

>> c{2,2}y <« cell contents
ans =

10 20 30 40 50

>> class(c{2,2})
ans =
double

>> cf1,13(2) cell cell indexing ()
ans =
“1BM*©

content indexing {}

>> class(c{1l,1}(2))
ans =
cell

>> c{1,1}{2} <«— cell contents
ans =

1BM

>> class(c{l,1}{2}P)
ans =
char

>> d = c;

>> % d(1,3) = {[4 5 6]"}; % define as cell

>> df{1,3} = [4,5,6]" % define content
d =

{3x1 cell} [2x2 double] [3x1 double]

@(x)x.M2+1 [1x5 double] 1
>> d(2,3)
ans =

{1} Apple
BM

>> d{2,3} Mieresoft

ans =

L]
>> cellplot(d); ——

>> e =

>> cellplot(e)

>> F =

>> cellplot(T)

reshape(d, 3,2)

repmat(c,1,2)

|

e
IE’I

soft

>
)

FE]'

Apple
IBM

Microsoft

pple

BM

NN

t .
NN NN

try also

>> F =

d*;

>> c{1,1}{2} = "Google-";

>> c{1,2} = 10*c{1,2}; changing cell
>> c{2,2}(3) = 300; array contents
>> celldisp(c)
c{l,1y{1} =
Agple}{ } could have used:
c{1,1}{2} = c{1,1}(2) = {"Google"};
Google
c{1,1}{3} = why not ?
Microsoft c(1,2) = 10*c(1,2);
c{2,1} =

OOX."2+1 why not ?
cil,2} = c{2,2}{3} = 300;

10 20

30 40
c{2,2} =

10 20 300 40 50

varargin varargin,varargout are cell arrays that
Yclgelgeloliisy | g]low the passing a variable number of function

Inputs & outputs

% [X,y,vx,vy] = trajectory(t,v0,th0,h0,q9)
function [varargout] = trajectory(t,vO,varargin)
Nin = nargin-2; % number of varargin Inputs

T NIn==0, th0=90; h0=0; g=9.81; end

i1IT Nin==1, thO=varargin{l}; h0=0; g=9.81; end

T Nin==2, thO=varargin{l}; ;
hO=varargin{2}; g=9.81; end

1T Nin==3, thO=varargin{l}; ;

hO=varargin{2}; g=varargin{3}; end

continues

thO = thO * pi1/180; % convert to radians

X = vO0 * cos(th0) * t;

y = hO + vO * sin(th0) * t - 1/2 * g * t."2;

vx = vO * cos(th0);

vy = vO * sin(thO0) - g * t;

1T nargout==1; varargout{l} = x; end

1T nargout==2; varargout{l} = x; ...
varargout{2} = y; end

1T nargout==3; varargout{l} = Xx;
varargout{2} =vy; ...
varargout{3} = vx; end

1T nargout==4; varargout{l} = Xx;
varargout{2} = vy;
varargout{3} = vx;
varargout{4} = vy; end

Multidimensional Arrays

A three-dimensional array Is a collection of
two-dimensional matrices of the same size, and

are characterized by triple indexing, e.g.,
A(1,J,p) isthe (1,)) matrix element of the p-th matrix.

Higher-dimensional arrays can also be defined, e.g.,
a 4D array Is a collection of 3D arrays of the same size.

columns D

i ages . :
rows - » bad applications in

video processing

>>
>>
>>
>>

>>

A(:

A(:

A(:

(
A,

[12 3 4];

A(:,

A

1
3

- 1)

,2.2)

10
30

)

(JO
\/\./

2
A

20
40

,2,3) =

100
300

200
400

10*a;

100*a;

pages

—
~

sum, min, max
can operate along the
1,],p dimensions

A(:,:

A(z,:

1)
1
3
2)

10
30

2
A

20
40

A(:,:,3) =
100
300

200
400

>> sum(A, 3)

ans

111
333

222
444

>> sum(A, 1)
ans(:,:,1)
4
ans(:,:,2)

40 60
ans(:,:,3) =
400 600

I o |l

>> sum(A, 2)
ans(:,:,1) =
3
!
ans(:,:,2)
30
70
ans(:,:,3)
300
700

>> min(A,[]1,1)

A(z,:,1) = ans(:,:,1) =
1 2 1 2
3 4 ans(:,:,2) =
10 20
A(-,iéz) —20 ans(:,:,3) =
100 200
30 40
o) >> min(A,[1,2)
AC:,:,3) = ans(:,:,1) =
100 200 1
300 400 3
ans(:,:,2) =
>> min(A, []1,3) 10
ans = 30
1 2 ans(:,:,3) =

300

A1) = >> A>20 & A<300

1 2 ans(:,:,1) =

3 4 0 0

0 0

A(:,:,2) = ans(:,:,2) =

10 20 0 0

30 40 1 L

ans(:,:,3) =

A(:,:,3) = 1 1

100 200 0 0
300 400 >> k = find(A>20 & A<300)

column-order
across pages

= O 00 O

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

