Rutgers University
School of Engineering

Fall 2011
14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department
orfanidi@ece.rutgers.edu

week 11

— | Week 11 - Numerical methods — data fitting (ch. 12)

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)

Week 4 - Plotting — 2D and 3D plots (ch. 5)

Week 5 - User-defined functions (ch. 6)

Week 6 - Input-output processing (ch. 7)

Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)

Week 9 - Strings, structures, cell arrays (ch. 10)

Week 10 - Symbolic math (ch. 11)

Week 12 — Selected topics

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009

Numerical Methods

Data Fitting, Smoothing, Filtering

data fitting with polynomials — polyfit, polyval
examples: Moore’s law, Hank Aaaron, US census data
data interpolation — interpl, spline, pchip
least-squares polynomial regression

least-squares with other basis functions

example: trigonometric fits

multivariate regression — NFL data
smoothing — smooth

example: global warming
digital filtering — f1lter
examples: bandpass filter, filtering ECG signals

Polynomial data fitting polyfit, polyval

P(x) = p1x™ + pox c o+ PMX + PM+1

p: [pls sz---: pﬂ‘fs pf‘rﬁf—l—l]

P(x) =5x* —2x* + x° +4x + 3

p: [5! _2! 1! 45 3]

Given coefficients p, evaluate P(x) at a vector of x’s — (polyval)

Given p, find the roots of P(x) — (roots)
Given the roots, reconstruct the coefficient vector p — (poly)

Given N data points {xi, yi}, 1=1,2,...,N, find an M-th degree
polynomial that best fits the data — (polyfit)

P(x) = 5x* —2X% + X* +4x + 3 polyfit, polyval

p: [5! _2! 1: 4: 3]

> p = [5, -2, 1, 4, 3];
>> X linspace(-1,1,201);

>> y = polyval(p, x)
>> plot(X,y, "b");

y=5X4-2X3+X2+4X+3

15

0.5 1

o L

-1 -0.5

Given N data points {xi, yi}, 1=1,2,...,N, find an M-th degree
polynomial that best fits the data — (polyfit)

% design procedure: M = polynomial order
X1 = [x1,x2,...,xN]; if N = M+1, the polynomial
yi = [yl,y2,...,yN]; Interpolates the data

p = polyfit(xi,yi,M); | |if N> M+1, the polynomial
provides the best fit In
y = polyval(p,Xx); a least-squares sense

evaluate P(x) at a given vector X

>>
>>
>>
>>
>>
>>

U‘< X T K

11,2,3,4]; % from homework set-8
[-1,2,-2,3];

polyfit(xi,yi,S);

linspace(0,5,101);

polyval(p,x);

lot(X,y, "b", X1,y1,"ro");

O

< X

X =

for
P

y

[1s 31 47 61 9];
14, 4, 7, 11, 19];

linspace(0,10,101);

M

= [1,2,3,4]

polyfit(xi,yi,M);

polyval(p,x);

figure;
plot(x,y,"r-", xi,yi,"b.", "markersize®,b25);
yaxis(-2,22,0:5:20); xaxi1s(0,10,0:2:10);
xlabel("x"); title("polynomial fit");
legend([" fit, {\itM} = ",num2str(M)], ...

end

" data“,

"location®,"se");

polynomial fit

— fit, M =3
0 ® data

10

polynomial fit

polynomial fit

0 ® data

10

% year ti
1954 1
1955 2
1956 3
1957 4
1958)
1959 6
1960 7
1961 8
1962 9
1963 10
1964 11
1965 12
1966 13
1967 14
1968 15
1969 16
1970 17
1971 18
1972 19
1973 20

A

< =

cumsum(H) ;

24
32
44
39
29
44
38
47
34
40

load("aaron.dat");

A(:,2); H = A(:,3);

Hank Aaron's Home Run Output

— linear fit |
* data

0 2 4 6 8 1012 14 16 18 20
t
Hank Aaron's Home Run Output

700" *

— y=37x-37

e data
O @ | | | | T T T T T
0 2 4 6 8 1012 14 16 18 20
t

Given N data points {xi, yi}, 1=1,2,...,N, the following data

models can be reduced to linear fits using an appropriate

transformation of the data:

linear: y=ax +b

exponential: y = be™ = log(y)= ax +log(b)
exponential: y = b 2% = log,(y)= ax +log,(b)
exponential: y = bxe™ = log(y/x)= ax + log(b)

power: y = bx“ = log(y)= a log(x)+log(b)
>> p = polyfit(xi,log(yir),1); % exponential
>>y = exp(polyval(p,x)); % y=exp(a*x+log(b))
>> a = p(1);
>> b = exp(p(2)); % so that y = b*exp(a*x)

NP ~NOOONNOONPFPORRNNOONPWENENAEADNDDN

-300e+003
-500e+003
-500e+003
-900e+004
-340e+005
- 750e+005
-200e+006
-100e+006
-300e+006
-500e+006
-800e+006
-500e+006
-130e+007
-200e+007
-200e+007
-430e+007
-059e+008
-200e+008
-920e+008
-410e+008
-910e+008
-820e+008
-810e+008
-890e+008
- 700e+009
-000e+009

Moore’s law from set-4

0 transistor count

10

. . . ﬁt
9 i i : * data

1970 1980 1990 2000 2010
year

fitted model:
f(t) = b*2.Ma*(t-tl));

%
%
%
%

source: Wikipedia
US population in millions

ti yi

1790 3.929
1800 5.237
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192

US Population

6
5 L
a4
o
B
23
2/ — quadratic fit ||
* data

1 | | | 1 1 1
1800 1840 1880 1920 1960 2000

400

population, millions

w
)
o

DO
)
o

=
)
=)

t
US Population

— fit
* data

0 | | | | |
1800 1840 1880 1920 1960 2000

t

A = load("uspop.dat”); % fi1le on sakail

=h

A(:,1); % read data
AC:,2);

<

p = polyfit(ti,log(yi),2) % quadratic

-6.4657e-005 0.2653 -266.4672

population model:
y = exp(p(1)*t.”2 + p(2)*t + p(3));

The curve fitting toolbox allows more >> doc curvefit

complicated nonlinear data fits.

Given N data points {xi, yi}, 1=1,2,...,N, find
Interpolated values, y = f(x), at points x

Interpolation

% procedure:

X1 = [x1,x2,...,xN];

yi = [yl,y2,...,yN];

y = interpl(xi,yl,x,method);
y = spline(X1,yi1,Xx);

y = pchip(Xi,yi1,x);

method = "linear” default
"spline”

>> doc 1nterpl

>> doc spline
>> doc pchip

"pchip” piecewise cubic Hermite
"nearest” Interpolation polynomial

linear
12

10+

S N B~ O @©

— interpolated |

® data

0 2 4 6 8 10
X

pchip
12 ‘ ‘

10+

— interpolated |
® data

0 2 4 6 8 10

S N &~ O @©

spline
12
10+
8,
6,
4,
2,
0 — interpolated |
0 ® data
0 2 4 6 8 10
X
nearest
12
10+
3 I
6,
4,
2,
0 — interpolated |
® data
9 ‘ ‘ ‘ ‘
0 2 4 6 8 10

-3:3 Interpolation

X1 =

yi = sign(xi);

x = linspace(-3,3,121);
ys = spline(xi,yi,X);
yp = pchip(Xi,yi,x);

plot(x,ys,"r-", l

X,yp,“b-", ... 1f
xi,yi,"k.");

0.5

O,

-0.5/

-1

® data

-1.5

How does polyfit work? Consider a straight-line polynomial
fit, y = ax+Db, to N data points {xi, yi}, i=1,2,....N | Fglelfsslel8

overdetermined & inconsistent linear least-squares
system of 5 equations in 2 unknowns solution
ﬂXlerlYl X1 1 Vi
ax,+b=y, X2 1 V2
axs+b=y; = X3 1 [z] val, p[Z]
axs+b=y, Xq 1 V4
axs +b=ys X5 1 Vs

A is the design matrix | A J) —); p=A\y

xt = [1, 3, 4, 6, 9]7; % column vectors
yi = [4, 4, 7, 11, 19]";
A = [x1, ones(5,1)]; % design matrix
p = A\yl
p:

1.9892 +

-0.1505 15
p = polyfit(xi,yi,1) > 10°
P = 6|

1.9892 -0.1505

0 | | |

X = linspace(1,9,91); A
y = polyval(p,x);

plot(x,y,"r", xi,yil,"b.","markersize”,20);

Quadratic fit, y=ax2 + bx + ¢

!

axi +bx;+c=y X7 x; 1 V1
axs+bx,+c=y X5 xo 1| |al Vo
ax5;+bxs+c=y; = |x3x31||b|l=]y;
axi;+bxs+c=y, X; x4 1] |c V4
ax: +bxs+c=y; X2 x5 1| Vs

I
p=A\y Ap=y

polynomial

to N data points {Xi, Vi}, i=1, 2,..., N regression
overdetermined & inconsistent linear least-squares
system of 5 equations in 3 unknowns solution

least-squares

: olynomial
Euclidean L2 norm POy

solution

regression

IAp-yl=min = p=A\Yy

(A"AN(A™™Y)
pinv(A)*y

assumes that M+1 < N and that A has full rank,
conditions that are typically satisfied in practice
(then, p Is unigue least-squares solution)

equivalent solutions: p
P

other norms — such as L1 — are used In practice
but don’t have a closed-form solution — several
MATLAB toolboxes exist for such problems

For straight line fits, the equivalent solution satisfies:
(A*A)*p = (A™™y)

and leads to the following 2x2 linear system for the
straight-line parameters, p = [a,b]" (i.e., y=a*x+b)

g
Z:x:@- N b Eyi

p = [sum(xX1.72), sum(xXi); ..
sum(x1), N] \ [sum(Xi. *yl) sum(yi)]}

p = [xi,ones(N,1)] \ vyi % 1s much simpler

The data model is assumed to be a linear regression
combination of known basis functions, with other
such as exponential, trigonometric, etc: basis functions

y =co+cifi(X)+cofa (X)+ -+ - + cpmfm (X)

and the objective is to determine the coefficients
Cj to fit N data points {Xi, Yi},1=1, 2,..., N,
where again we must assume M+1 <N

Polynomial fitting is a special case using the
monomial basis: 1, x, X2, ..., XM

Design procedure: set up the design matrix A and
solve the overdetermined linear system Ac =y

Example: M=3, N=5 regression

y =Co+ Cif1 (X)+Cof2(X)+c3fz (X with other
basis functions

Co + c1f1(X1) +C2f2(x1) +cafz(x1) =y

Co + C1f1(X2) +C2f2(X2) +Caf3(X2) = yo

Co + C1f1(X3) +C2f2(X3) +Caf3(X3) = 3

Co + C1f1(Xg) +C2f2(Xg) +Caf3(X4) = Y4

Co + C1f1(X5) +C2f2(X5) +Caf3(X5) = Y5

f1(x1) f>(x1) f3(x1) e V1

f1(x2) [2(x2) [3(x2) Y2 _
f1(x3) f20x3) [3(X3) El = | V3 AC_y
f1(x4) [2(X4) [3(Xy4) C2 V4 C:A\y
f1(xs) f2(xs) f3(x5) |- B Vs

WUOUWWWOUINNODONORONNO U R NN

regression

with other
basis functions

Example 1. modeling of temperature
variations in a city over 24 months

21Tt . (2Tt
VI(I[)= Cy+ Cy COS 12 + > sin ¥

basis functions

A = [ones(N,1), cos(2*p1*ti1/12), sin(2*pi1*ti/12)];
T

c = Alyl 24x3 design matrix
C =
61.0083
-20.3333
8.5565 estimated model

'
f =00 c(l) + c(2) * cos(2*p1*t/12) + ...
c(3) * sin(2*pi1*t/12);

t

linspace(0,24,241),

plot(t,f(t),"r*, ti,yi1,"b.","markersize”,b25);

S o© o o o
® ~ © o
(o) So9139p

-]
an

12 15 18 21 24

months

9

6

C
Example 2: y = ;1 +CoT

basis functions

A= [1./7x1, Xi1];
c = A\yl
C =
4_.3350
1.2950
x = linspace(1,4.2, 100);
y = c(l)./7x + c(2)*x;

plot(x,y, "r-", xi,yi,"b.");

P OWOWWNDNRERLPREPPER
NOWONEFE,E O MO
OO O0TOoTOlh B~ DO
A WO WOoOoOo-~NW-N

C1
Example 2: y = . +CoT

6.5

4.5

multivariate

Model: regression
V=0Cg+ O X+ 02X+ - - - + O Xy
Observations:
VII)=Co+ C1Xqp + CoXpp+ -+ -+ CyXpnyy, 1= 1,2,...,N

Design malrix (for M = 3, N = 5):

I X11 X122 X3 Co] Vi
| Xo1 Xoo Xog | Vo —
. B Cq ’ A C - y
Observatlons | X331 N3z X33 c = | V3 A\
. _—
i [X41 X4z Xa c V4 C y
| Xs; Xs2 Xs3 | L - Vs

predictors

%

C T I Y Rating
63.8827 5.32151 2.63612 7.65065 94.0
59.5616 6.02740 3.42466 7.63096 89.3
56.7177 5.51422 3.32604 8.03063 87.3
57.8466 5.94652 4.08163 7.33920 83.7
56.9642 5.17241 3.68492 7.67410 83.416
58.4536 3.86598 2.42268 7.15876 83.415
59.6271 3.89137 2.75638 7.12971 83.0
59.2422 4.64983 3.61653 7.40586 82.74
57.6277 4_.31335 2.85442 7.22201 82.68
57.0859 5.98311 4.43454 7.56077 82.6
57.0970 6.38867 4.89174 7.67469 82.6
59.3073 4.40223 3.57542 7.33810 81.9
59.6949 5.25424 4_.47458 7.44373 81.7
57.4151 4.82693 4.38234 7.84948 80.5
56.9971 5.28839 4.11319 7.26813 80.4
58.4635 3.97135 3.25521 7.15299 80.3
58.8330 4.53248 4.31834 7.68023 80.2
57.3457 4_.20535 3.60459 7.28291 79.2
56.0564 4.86084 3.95923 7.13054 78.2
54.5700 5.59198 4.87852 7.75916 78.2

x1 X2 X3 X4 y

see week-6 homework

% Joe Montana

% Dan Marino

% Boomer Esiason
% Dave Krieg

% Roger Staubach
% Bernie Kosar

% Ken O"Brien

% Jim Kelly

% Neil Lomax

% Sonny Jurgensen
% Len Dawson

% Ken Anderson

% Danny White

% Bart Starr

% Fran Tarkenton
% Tony Eason

% Dan Fouts

% Jim McMahon

% Bert Jones

% Johnny Unitas

reverse-engineering
of the NFL ratings

> <

@

O

Q

load("NFLO.dat");

Y(:.5);

% on sakai

[ones(size(Y,1),1), Y(:,1:4)];

A\y

1.9120
0.8389
3.3323
-4_1573
4.1428

[46 20 80
[50 20 80

~100 99]/24;
~100 100]/24;

multivariate

regression

design matrix

-

see week-6
homework

smooth(y); data smoothing

smooth(y,span);
smooth(y,method);
smooth(y,span,method) ;

method = "moving®™ (default, with span=5)
"loess”, “rloess”
"lowess®, “"rlowess”
"sgolay™

y(n) = m(n—Z)—l—m(n—l)-I—:B(E)n)—l-m(n-l-l)-l-iﬂ(ﬂ-l-2)

J(n) _y(n—M)+--+a(n)+ - +a(n+ M)
2M + 1

global temperature data (on sakai)

l
A = load("taveGL2v.dat");

t = A(:,1); y = A(:,end);

ys = smooth(y,15);
figure; plot(t,y,"r:", t,ys,"b-");

ys = smooth(y,25);
figure; plot(t,y,"r:", t,ys,"b-");

ys = smooth(y,0.2,"loess");
figure; plot(t,y,"r:", t,ys,"b-");

ys = smooth(y,0.3,"loess");
figure; plot(t,y,"r:", t,ys,"b-");

Global temperature - MA smoothing Global temperature - MA smoothing

0.6
0.4
0.2

o 0

02, , o n 02,

04 ¥ U 04 ¥

06 f 0.6

1860 1890 1920 1950 1980 2010 1860 1890 1920 1950 1980 2010
year year

06 I eeennennens, data
0.4/ — span=25

0.2
0r

CO

Global temperature - loess smoothing Global temperature - loess smoothing

0.6
0.4
0.2
5 0

0.6
0.4
0.2

o 0

04177 TN 04 7

06 | f 0.6 |

1860 1890 1920 1950 1980 2010 1860 1890 1920 1950 1980 2010
year year

y = filter(b,a,x);

P 1

output | | b, a, filter Input

signal

coefficients | | signal

digital

filtering

[XO,x1,x2, ... length-N signal
[VO,yl,y2, ... length-N signal

[bO,bl1,b2, ... order-M filter
[1, al,a2, ... order-M filter

Cbpt+biz bz 4 bz M

14 azl4agz2+---+ayzM

transfer
function

Example 1: Second-order filter, M =2 digital

filtering

b = [bO: bla b2]

a = [13 ai, a?]
7 bo+ b1z 1 +bgz? transfer
(2) = -
l+a;z7+ag2z2 function
Yn = —Q1 Yn—1—02Yn—2 + boTn + 01 Tn_1 + b2 xn_o

T

time-domain implementation
by Input/output difference equation,

equivalentto: y = filter(b,a,x)

Example 2: Bandpass filter, M =2 digital

filtering

noisy input signal, x(n)

e ee—

filtered signal, y(n)

[y
wW

D1 0
0 100 200 300
time samples, n 0 |
applications: -1
radio, TV, cell phone receivers -2 — y((n))
............. (n
0 100 200 300

time samples, n

Example 2. Bandpass filter, M =2

digital
filtering

transfer
function

bo + by 271 + bs 272
H —
(2) l+aiz14+a922
b=[G, 0, —G]

a=[1, —2Rcoswy, R?]

o (1 — R)\/l — 2R cos(2wy) + R?

2 S1n wy

amm filter design

R =099, fo=500Hz, fs=10000Hz, wy=

R = 0.99;
fO = 500; fs = 10000; wO = 2*pi1*f0/fs;

G = (1-R)*sgrt(1-2*R*cos(2*w0) + ...
R™2)/2/sin(w0) ;

al = -2*R*cos(w0); a2 = R"2;

a=1[1, al, a2}, b = G*[1, 0, -1]
a =

1.0000 -1.8831 0.9801
b =

0.0100 O -0.0100

f = linspace(0,1500,1501); w = 2*pi1*f/fs;

H = abs(freqz(b,a,w)); % frequency response

B G(1— 272
~ 1—2Rcoswg)z~1 + R2 272

frequency response

z=el¥ 1 |
2n f
w p—
f _
3 S
T 0.5

0 500 1000 1500
f, Hz

s(n) = cos(won) ——WEIIERINE]

random noise

2(n) = s(n) + v(n)-

N=300; n = O:N-1;

s = cos(w0*n);
rng(200); v = randn(1,N);

X = S + V; % noisy signal
y = filter(b,a,x); % filtering
figure; plot(n,x, "b-");

figure; plot(n,y,"r-", n,s, "b:");

digital

filtering

noisy input signal, x(n)

3 ‘ ‘ digital
2| | filtering
1 !
ol ,
-1
O
-30 100 0 O 0 300 filtered signal, y(n)
time samples, n
9l
1t
o
n
9 — y(n)
............. o(n)
0 100 200 300

time samples, n

Frequency Response

(@)) N
= 1L N
Mu o Q) 1
b ©
L — gC%
= .m_._an
nVuar
5 5 &
(-
Rﬂhnuu
e Q@O
™M O 3
c
L o &
pn_rua
Et o
S 2
)
£ =
— 10
o

60 90 120 150

30

1.5

@)
B O
O~
AR E d
AR ﬂwy m
=)
cE -
19
o
— 1™
_ —
1
10
—
@)
: O
; €2
SRR RN
< 2
Mo
I R
op{ o
© O
g &
o
R
< in

t, sec

t, sec

Example 3: ECG + 60 Hz interference digital

filtering

fO = 60; fs = 1000; T = 1/fs; % sampling rate

nw u

%

500; M = 3; % samples per beat, no. beats

sgolayfilt(ecg(N),0,15); % simulated ECG
[s.,s,s]; % 3 beats

O:length(s)-1; tn = n*T, % sampling times

= s + 0.5%cos(2*p1*f0*tn);
ECG + 60 Hz 1nterference

wo = 2*p1*f0/fs; % digital frequency

R = 0.995; % pole radius

G = (1-2*R*cos(wWO0)+R"2)/(2-2*cos(w0)); % gain
a=1[1, -2*R*cos(w0), R™2]; % denominator
b = G*[1, -2*cos(w0), 1]; % numerator

f = linspace(0,150,601); w = 2*p1*f/Ts;

H = abs(freqgz(b,a,w)); % frequency response

plot(f,H, "b", ¥0,0,"r.","markersize",16);
y = filter(b,a,x); % Filter noisy ECG

plot(tn,x,"r:", tn,s,"k-"); % noisy ECG
plot(tn,x,"r:", tn,y,"k-"); % filtered ECG

Frequency Response

—1 + Z_2

ZZ

1L ol N S

=3 3|5 2 &

{®) %SB

+— o|lQ |

C BN

(€D o™

“1_

Y —

-

(&)

= |

(@)

- \.NMJ

S

o
L0
—
=
RS
—
o
3>
o
D
o
M

— 0 <

S

noisy

S
o=
[Ca iy e)
> O
R
o =
=

@)

=
O o
O o
3 &

noise

1.5

0.5

1.5

0.5

t, sec

t, sec

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

