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Week  1  - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week  2  - Basics – operators, functions, program flow (ch. 2 & 3)
Week  3  - Matrices (ch. 4)
Week  4  - Plotting – 2D and 3D plots (ch. 5)
Week  5  - User-defined functions (ch. 6)
Week  6  - Input-output processing (ch. 7)
Week  7  - Program flow control & relational operators (ch. 8)
Week  8  - Matrix algebra – solving linear equations (ch. 9)
Week  9  - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed.,  Prentice Hall, 2009



Numerical Methods
Data Fitting,  Smoothing,  Filtering

• data fitting with polynomials – polyfit, polyval
• examples: Moore’s law, Hank Aaaron, US census data
• data interpolation – interp1, spline, pchip
• least-squares polynomial regression
• least-squares with other basis functions
• example: trigonometric fits
• multivariate regression – NFL data
• smoothing – smooth
• example: global warming
• digital filtering – filter
• examples: bandpass filter, filtering ECG signals



>> doc polyfit
>> doc polyval
>> doc roots
>> doc poly

Polynomial data fitting polyfit, polyval

Given coefficients p, evaluate P(x) at a vector of x’s – (polyval)

Given p, find the roots of P(x) – (roots)
Given the roots, reconstruct the coefficient vector p – (poly)

Given N data points {xi, yi}, i=1,2,…,N,  find an M-th degree
polynomial that best fits the data – (polyfit)
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polyfit, polyval

>> p = [5, -2, 1, 4, 3];
>> x = linspace(-1,1,201);
>> y = polyval(p,x);
>> plot(x,y,'b');



Given N data points {xi, yi}, i=1,2,…,N,  find an M-th degree
polynomial that best fits the data – (polyfit)

% design procedure:

xi = [x1,x2,...,xN];
yi = [y1,y2,...,yN];

p = polyfit(xi,yi,M);

y = polyval(p,x);

evaluate P(x) at a given vector x

M = polynomial order

if N = M+1, the polynomial
interpolates the data 

if N > M+1, the polynomial
provides the best fit in 
a least-squares sense 
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>> xi = [1,2,3,4];    % from homework set-8
>> yi = [-1,2,-2,3];
>> p = polyfit(xi,yi,3);
>> x = linspace(0,5,101);
>> y = polyval(p,x);
>> plot(x,y,'b', xi,yi,'ro');



xi = [1, 3, 4, 6, 9];
yi = [4, 4, 7, 11, 19];

x = linspace(0,10,101);

for M = [1,2,3,4]
p = polyfit(xi,yi,M);

y = polyval(p,x);

figure; 
plot(x,y,'r-', xi,yi,'b.', 'markersize',25);
yaxis(-2,22,0:5:20); xaxis(0,10,0:2:10);
xlabel('x'); title('polynomial fit'); 
legend([' fit, {\itM} = ',num2str(M)],...

' data', 'location','se'); 
end
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 fit, M = 1
 data
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 fit, M = 2
 data
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 fit, M = 3
 data
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 fit, M = 4
 data



% year    ti   H
% ---------------
1954    1    13
1955    2    27
1956    3    26
1957    4    44
1958    5    30
1959    6    39
1960    7    40
1961    8    34
1962    9    45
1963   10    44
1964   11    24
1965   12    32
1966   13    44
1967   14    39
1968   15    29
1969   16    44
1970   17    38
1971   18    47
1972   19    34
1973   20    40

A = load('aaron.dat');

ti = A(:,2); H = A(:,3);
yi = cumsum(H);

from set-6
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 y = 37x-37
 data



Given N data points {xi, yi}, i=1,2,…,N, the following data 
models can be reduced to linear fits using an appropriate 
transformation of the data:

>> p = polyfit(xi,log(yi),1);  % exponential
>> y = exp(polyval(p,x));   % y=exp(a*x+log(b))
>> a = p(1);
>> b = exp(p(2));    % so that y = b*exp(a*x)
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 fit
 data

yi        ti
-----------------
2.300e+003   1971
2.500e+003   1972
4.500e+003   1974
2.900e+004   1979
1.340e+005   1982
2.750e+005   1985
1.200e+006   1989
3.100e+006   1993
4.300e+006   1996
7.500e+006   1997
8.800e+006   1997
9.500e+006   1999
2.130e+007   1999
2.200e+007   1999
4.200e+007   2000
5.430e+007   2003
1.059e+008   2003
2.200e+008   2003
5.920e+008   2004
2.410e+008   2006
2.910e+008   2006
5.820e+008   2006
6.810e+008   2006
7.890e+008   2007
1.700e+009   2006
2.000e+009   2008

Moore’s law from set-4

fitted model:
f(t) = b*2.^(a*(t-t1));
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 quadratic fit
 data
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 fit
 data

% source: Wikipedia
% US population in millions
%
%  ti       yi
% -------------
1790     3.929
1800     5.237
1810     7.240
1820     9.638
1830    12.866
1840    17.069
1850    23.192
1860    31.443
1870    38.558
1880    49.371
1890    62.980
1900    76.212
1910    92.229
1920   106.022
1930   123.202
1940   132.165
1950   151.326
1960   179.323
1970   203.212
1980   226.546
1990   248.710
2000 281.422
2010 308.746



A = load('uspop.dat');   % file on sakai

ti = A(:,1);    % read data
yi = A(:,2);

p = polyfit(ti,log(yi),2)    % quadratic

p = 
-6.4657e-005  0.2653  -266.4672

population model:
y = exp(p(1)*t.^2 + p(2)*t + p(3));

The curve fitting toolbox allows more 
complicated nonlinear data fits.

>> doc curvefit



interpolation

>> doc interp1
>> doc spline
>> doc pchip

Given N data points {xi, yi}, i=1,2,…,N,  find 
interpolated values,  y = f(x), at points x

% procedure:

xi = [x1,x2,...,xN];
yi = [y1,y2,...,yN];

y = interp1(xi,yi,x,method);
y = spline(xi,yi,x);
y = pchip(xi,yi,x);

method = 'linear'
'spline'
'pchip'
'nearest'

default

piecewise cubic Hermite
interpolation polynomial
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 spline
 pchip
 data

interpolationxi = -3:3
yi = sign(xi);

x = linspace(-3,3,121);

ys = spline(xi,yi,x);
yp = pchip(xi,yi,x);

plot(x,ys,'r-',...
x,yp,'b-',...
xi,yi,'k.');



A p = y p = A \ y

How does polyfit work? Consider a straight-line 
fit, y = ax+b, to N data points {xi, yi}, i=1,2,…,N

polynomial
regression

overdetermined & inconsistent linear 
system of 5 equations in 2 unknowns

least-squares
solution

A is the design matrix
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xi = [1, 3, 4, 6, 9]';     % column vectors
yi = [4, 4, 7, 11, 19]';

A = [xi, ones(5,1)];       % design matrix
p = A\yi
p =

1.9892
-0.1505

p = polyfit(xi,yi,1)
p =

1.9892   -0.1505

x = linspace(1,9,91);
y = polyval(p,x);

plot(x,y,'r', xi,yi,'b.','markersize',20);



A p = yp = A \ y

overdetermined & inconsistent linear 
system of 5 equations in 3 unknowns

least-squares
solution

Quadratic fit,  y = ax2 + bx + c
to N data points {xi, yi}, i=1, 2,…, N

polynomial
regression



least-squares
solution

||A p – y||2 = min ⇒ p = A \ y

assumes that  M+1  ≤ N and that A has full rank,
conditions  that are typically satisfied in practice
(then, p is unique least-squares solution)

other norms – such as L1 – are used in practice 
but don’t have a closed-form solution – several
MATLAB toolboxes exist for such problems 

Euclidean L2 norm

equivalent solutions: p = (A'A)\(A'*y)
p = pinv(A)*y

polynomial
regression



For straight line fits, the equivalent solution satisfies:

(A'A)*p = (A'*y)

and leads to the following 2x2 linear system for the 
straight-line parameters,  p = [a,b]' (i.e., y=a*x+b)

p = [sum(xi.^2), sum(xi); ...
sum(xi), N ] \ [sum(xi.*yi); sum(yi)]

p = [xi,ones(N,1)] \ yi   % is much simpler



regression 
with other 
basis functions

The data model is assumed to be a linear 
combination of known basis functions,
such as exponential, trigonometric, etc:

and the objective is to determine the coefficients 
ci to fit N data points {xi, yi}, i = 1, 2,…, N, 
where again we must assume  M+1 ≤ N

Polynomial fitting is a special case using the
monomial basis: 1, x, x^2, …, x^M

Design procedure: set up the design matrix A and
solve the overdetermined linear system A c = y



Example:  M = 3, N = 5

A c = y
c = A \ y

regression 
with other 
basis functions



regression 
with other 
basis functions

Example 1: modeling of temperature 
variations in a city over 24 months

ti   yi
----------
0   42.7
1   46.7
2   59.1
3   69.5
4   81.0
5   80.7
6   83.2
7   72.0
8   67.1
9   52.6

10   43.7
11   40.9
12   38.6
13   48.8
14   57.2
15   71.2
16   77.5
17   79.8
18   82.3
19   76.3
20   61.5
21   53.0
22   41.5
23   37.3

basis functions



A = [ones(N,1), cos(2*pi*ti/12), sin(2*pi*ti/12)]; 

c = A\yi

c =
61.0083
-20.3333
8.5565

f = @(t) c(1) + c(2) * cos(2*pi*t/12) + ...
c(3) * sin(2*pi*t/12);

t = linspace(0,24,241);

plot(t,f(t),'r', ti,yi,'b.','markersize',25);

24x3 design matrix

estimated model
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Example 2:
xi   yi
--------
1.0  5.7
1.4  4.8
1.9  4.7
2.1  4.9
2.7  5.0
3.0  5.3
3.3  5.6
3.9  6.3
4.2  6.4

basis functions

A = [1./xi, xi];
c = A\yi
c =

4.3350
1.2950

x = linspace(1,4.2, 100); 
y = c(1)./x + c(2)*x;

plot(x,y,'r-', xi,yi,'b.');
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multivariate
regression 

A c = y
c = A \ y

predictors

observations
i

j



%   C         T         I         Y      Rating     Player
% ----------------------------------------------------------------
63.8827   5.32151   2.63612   7.65065   94.0     % Joe Montana
59.5616   6.02740   3.42466   7.63096   89.3     % Dan Marino
56.7177   5.51422   3.32604   8.03063   87.3     % Boomer Esiason
57.8466   5.94652   4.08163   7.33920   83.7     % Dave Krieg
56.9642   5.17241   3.68492   7.67410   83.416   % Roger Staubach
58.4536   3.86598   2.42268   7.15876   83.415   % Bernie Kosar
59.6271   3.89137   2.75638   7.12971   83.0     % Ken O'Brien
59.2422   4.64983   3.61653   7.40586   82.74    % Jim Kelly
57.6277   4.31335   2.85442   7.22201   82.68    % Neil Lomax
57.0859   5.98311   4.43454   7.56077   82.6     % Sonny Jurgensen
57.0970   6.38867   4.89174   7.67469   82.6     % Len Dawson
59.3073   4.40223   3.57542   7.33810   81.9     % Ken Anderson
59.6949   5.25424   4.47458   7.44373   81.7     % Danny White
57.4151   4.82693   4.38234   7.84948   80.5     % Bart Starr
56.9971   5.28839   4.11319   7.26813   80.4     % Fran Tarkenton
58.4635   3.97135   3.25521   7.15299   80.3     % Tony Eason
58.8330   4.53248   4.31834   7.68023   80.2     % Dan Fouts
57.3457   4.20535   3.60459   7.28291   79.2     % Jim McMahon
56.0564   4.86084   3.95923   7.13054   78.2     % Bert Jones
54.5700   5.59198   4.87852   7.75916   78.2     % Johnny Unitas

%   x1        x2        x3        x4       y
reverse-engineering
of the NFL ratingssee week-6 homework



multivariate
regression 

Y = load('NFL0.dat');  % on sakai

y = Y(:,5);   
A = [ones(size(Y,1),1), Y(:,1:4)];

c = A\y
c =

1.9120
0.8389
3.3323
-4.1573
4.1428

c = [46  20  80  -100  99]/24;

c ≈ [50  20  80  -100  100]/24;
see week-6
homework

design matrix



data smoothing ys = smooth(y);
ys = smooth(y,span);
ys = smooth(y,method);
ys = smooth(y,span,method);

method = 'moving'  (default, with span=5)
'loess',  'rloess'
'lowess', 'rlowess'
'sgolay'



data smoothing 

A = load('taveGL2v.dat');

t = A(:,1); y = A(:,end);

ys = smooth(y,15);
figure; plot(t,y,'r:', t,ys,'b-');

ys = smooth(y,25);
figure; plot(t,y,'r:', t,ys,'b-');

ys = smooth(y,0.2,'loess');
figure; plot(t,y,'r:', t,ys,'b-');

ys = smooth(y,0.3,'loess');
figure; plot(t,y,'r:', t,ys,'b-');

global temperature data (on sakai) 
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 data
 span=0.2
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 data
 span=0.3
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 data
 span=15
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 data
 span=25



digital
filtering 

y = filter(b,a,x);

output
signal

b, a, filter 
coefficients

x = [x0,x1,x2,..., xN] = length-N signal
y = [y0,y1,y2,..., yN] = length-N signal

b = [b0,b1,b2,..., bM] = order-M filter
a = [1, a1,a2,..., aM] = order-M filter

transfer
function

input
signal



digital
filtering 

transfer
function

Example 1:  Second-order filter,  M = 2

time-domain implementation 
by input/output difference equation,

equivalent to:  y = filter(b,a,x)



digital
filtering 

Example 2:  Bandpass filter,  M = 2
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 y(n)
 s(n)
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applications: 
radio, TV, cell phone receivers



digital
filtering 

Example 2:  Bandpass filter,  M = 2

transfer
function

filter design



R = 0.99; 
f0 = 500; fs = 10000; w0 = 2*pi*f0/fs;

G = (1-R)*sqrt(1-2*R*cos(2*w0) + ...
R^2)/2/sin(w0);

a1 = -2*R*cos(w0); a2 = R^2;

a = [1, a1, a2], b = G*[1, 0, -1]

a =
1.0000   -1.8831    0.9801

b =
0.0100         0   -0.0100
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f = linspace(0,1500,1501); w = 2*pi*f/fs;

H = abs(freqz(b,a,w)); % frequency response

>> doc freqz



digital
filtering 

desired signal 

random noise 

N=300; n = 0:N-1; 

s = cos(w0*n);
rng(200); v = randn(1,N);

x = s + v;           % noisy signal

y = filter(b,a,x);   % filtering

figure; plot(n,x, 'b-');

figure; plot(n,y,'r-', n,s, 'b:');
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 y(n)
 s(n)

0 100 200 300
-3

-2

-1

0

1

2

3

time samples,  n

noisy input signal,  x(n)
digital
filtering 



digital
filtering 
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 noisy ECG
 filtered ECG
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 noisy ECG
 noise-free ECG

Example 3:  Removing 60 Hz 
interference from an ECG 
using a notch filter at 60 Hz
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digital
filtering 

Example 3:  ECG + 60 Hz interference

f0 = 60; fs = 1000; T = 1/fs;  % sampling rate

N = 500; M = 3;   % samples per beat, no. beats

s = sgolayfilt(ecg(N),0,15);   % simulated ECG
s = [s,s,s];                   % 3 beats

n = 0:length(s)-1; tn = n*T;   % sampling times

x = s + 0.5*cos(2*pi*f0*tn); 
% ECG + 60 Hz interference



w0 = 2*pi*f0/fs;          % digital frequency
R = 0.995;                % pole radius

G = (1-2*R*cos(w0)+R^2)/(2-2*cos(w0));  % gain

a = [1, -2*R*cos(w0), R^2];      % denominator
b = G*[1, -2*cos(w0), 1];        % numerator

f = linspace(0,150,601); w = 2*pi*f/fs; 

H = abs(freqz(b,a,w));    % frequency response

plot(f,H,'b', f0,0,'r.','markersize',16);

y = filter(b,a,x);         % filter noisy ECG

plot(tn,x,'r:', tn,s,'k-');    % noisy ECG
plot(tn,x,'r:', tn,y,'k-');    % filtered ECG
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 noisy ECG
 filtered ECG
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notch filter at 60 Hz 
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