
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 11

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output processing (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 – Selected topics

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

Numerical Methods
Data Fitting, Smoothing, Filtering

• data fitting with polynomials – polyfit, polyval
• examples: Moore’s law, Hank Aaaron, US census data
• data interpolation – interp1, spline, pchip
• least-squares polynomial regression
• least-squares with other basis functions
• example: trigonometric fits
• multivariate regression – NFL data
• smoothing – smooth
• example: global warming
• digital filtering – filter
• examples: bandpass filter, filtering ECG signals

>> doc polyfit
>> doc polyval
>> doc roots
>> doc poly

Polynomial data fitting polyfit, polyval

Given coefficients p, evaluate P(x) at a vector of x’s – (polyval)

Given p, find the roots of P(x) – (roots)
Given the roots, reconstruct the coefficient vector p – (poly)

Given N data points {xi, yi}, i=1,2,…,N, find an M-th degree
polynomial that best fits the data – (polyfit)

-1 -0.5 0 0.5 1
0

5

10

15

x

y

y = 5x4 - 2x3 + x2 + 4x + 3

polyfit, polyval

>> p = [5, -2, 1, 4, 3];
>> x = linspace(-1,1,201);
>> y = polyval(p,x);
>> plot(x,y,'b');

Given N data points {xi, yi}, i=1,2,…,N, find an M-th degree
polynomial that best fits the data – (polyfit)

% design procedure:

xi = [x1,x2,...,xN];
yi = [y1,y2,...,yN];

p = polyfit(xi,yi,M);

y = polyval(p,x);

evaluate P(x) at a given vector x

M = polynomial order

if N = M+1, the polynomial
interpolates the data

if N > M+1, the polynomial
provides the best fit in
a least-squares sense

0 1 2 3 4 5
-8

-6

-4

-2

0

2

4

6

8

x

y

>> xi = [1,2,3,4]; % from homework set-8
>> yi = [-1,2,-2,3];
>> p = polyfit(xi,yi,3);
>> x = linspace(0,5,101);
>> y = polyval(p,x);
>> plot(x,y,'b', xi,yi,'ro');

xi = [1, 3, 4, 6, 9];
yi = [4, 4, 7, 11, 19];

x = linspace(0,10,101);

for M = [1,2,3,4]
p = polyfit(xi,yi,M);

y = polyval(p,x);

figure;
plot(x,y,'r-', xi,yi,'b.', 'markersize',25);
yaxis(-2,22,0:5:20); xaxis(0,10,0:2:10);
xlabel('x'); title('polynomial fit');
legend([' fit, {\itM} = ',num2str(M)],...

' data', 'location','se');
end

0 2 4 6 8 10

0

5

10

15

20

x

polynomial fit

 fit, M = 1
 data

0 2 4 6 8 10

0

5

10

15

20

x

polynomial fit

 fit, M = 2
 data

0 2 4 6 8 10

0

5

10

15

20

x

polynomial fit

 fit, M = 3
 data

0 2 4 6 8 10

0

5

10

15

20

x

polynomial fit

 fit, M = 4
 data

% year ti H
% ---------------
1954 1 13
1955 2 27
1956 3 26
1957 4 44
1958 5 30
1959 6 39
1960 7 40
1961 8 34
1962 9 45
1963 10 44
1964 11 24
1965 12 32
1966 13 44
1967 14 39
1968 15 29
1969 16 44
1970 17 38
1971 18 47
1972 19 34
1973 20 40

A = load('aaron.dat');

ti = A(:,2); H = A(:,3);
yi = cumsum(H);

from set-6
0 2 4 6 8 10 12 14 16 18 20

0

100

200

300

400

500

600

700

800

t

to
ta

ls

Hank Aaron's Home Run Output

 linear fit
 data

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

t

to
ta

ls

Hank Aaron's Home Run Output

 y = 37x-37
 data

Given N data points {xi, yi}, i=1,2,…,N, the following data
models can be reduced to linear fits using an appropriate
transformation of the data:

>> p = polyfit(xi,log(yi),1); % exponential
>> y = exp(polyval(p,x)); % y=exp(a*x+log(b))
>> a = p(1);
>> b = exp(p(2)); % so that y = b*exp(a*x)

1970 1980 1990 2000 2010
10

2

10
4

10
6

10
8

10
10

year

co
u

n
t

transistor count

 fit
 data

yi ti

2.300e+003 1971
2.500e+003 1972
4.500e+003 1974
2.900e+004 1979
1.340e+005 1982
2.750e+005 1985
1.200e+006 1989
3.100e+006 1993
4.300e+006 1996
7.500e+006 1997
8.800e+006 1997
9.500e+006 1999
2.130e+007 1999
2.200e+007 1999
4.200e+007 2000
5.430e+007 2003
1.059e+008 2003
2.200e+008 2003
5.920e+008 2004
2.410e+008 2006
2.910e+008 2006
5.820e+008 2006
6.810e+008 2006
7.890e+008 2007
1.700e+009 2006
2.000e+009 2008

Moore’s law from set-4

fitted model:
f(t) = b*2.^(a*(t-t1));

1800 1840 1880 1920 1960 2000
1

2

3

4

5

6

t

lo
g(

po
p)

US Population

 quadratic fit
 data

1800 1840 1880 1920 1960 2000
0

100

200

300

400

t

po
pu

la
ti

on
, m

ill
io

ns

US Population

 fit
 data

% source: Wikipedia
% US population in millions
%
% ti yi
% -------------
1790 3.929
1800 5.237
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.443
1870 38.558
1880 49.371
1890 62.980
1900 76.212
1910 92.229
1920 106.022
1930 123.202
1940 132.165
1950 151.326
1960 179.323
1970 203.212
1980 226.546
1990 248.710
2000 281.422
2010 308.746

A = load('uspop.dat'); % file on sakai

ti = A(:,1); % read data
yi = A(:,2);

p = polyfit(ti,log(yi),2) % quadratic

p =
-6.4657e-005 0.2653 -266.4672

population model:
y = exp(p(1)*t.^2 + p(2)*t + p(3));

The curve fitting toolbox allows more
complicated nonlinear data fits.

>> doc curvefit

interpolation

>> doc interp1
>> doc spline
>> doc pchip

Given N data points {xi, yi}, i=1,2,…,N, find
interpolated values, y = f(x), at points x

% procedure:

xi = [x1,x2,...,xN];
yi = [y1,y2,...,yN];

y = interp1(xi,yi,x,method);
y = spline(xi,yi,x);
y = pchip(xi,yi,x);

method = 'linear'
'spline'
'pchip'
'nearest'

default

piecewise cubic Hermite
interpolation polynomial

0 2 4 6 8 10
-2

0

2

4

6

8

10

12

x

linear

 interpolated
 data

0 2 4 6 8 10
-2

0

2

4

6

8

10

12

x

pchip

 interpolated
 data

0 2 4 6 8 10
-2

0

2

4

6

8

10

12

x

spline

 interpolated
 data

0 2 4 6 8 10
-2

0

2

4

6

8

10

12

x

nearest

 interpolated
 data

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

 spline
 pchip
 data

interpolationxi = -3:3
yi = sign(xi);

x = linspace(-3,3,121);

ys = spline(xi,yi,x);
yp = pchip(xi,yi,x);

plot(x,ys,'r-',...
x,yp,'b-',...
xi,yi,'k.');

A p = y p = A \ y

How does polyfit work? Consider a straight-line
fit, y = ax+b, to N data points {xi, yi}, i=1,2,…,N

polynomial
regression

overdetermined & inconsistent linear
system of 5 equations in 2 unknowns

least-squares
solution

A is the design matrix

0 2 4 6 8 10
0

5

10

15

20

x
y

xi = [1, 3, 4, 6, 9]'; % column vectors
yi = [4, 4, 7, 11, 19]';

A = [xi, ones(5,1)]; % design matrix
p = A\yi
p =

1.9892
-0.1505

p = polyfit(xi,yi,1)
p =

1.9892 -0.1505

x = linspace(1,9,91);
y = polyval(p,x);

plot(x,y,'r', xi,yi,'b.','markersize',20);

A p = yp = A \ y

overdetermined & inconsistent linear
system of 5 equations in 3 unknowns

least-squares
solution

Quadratic fit, y = ax2 + bx + c
to N data points {xi, yi}, i=1, 2,…, N

polynomial
regression

least-squares
solution

||A p – y||2 = min ⇒ p = A \ y

assumes that M+1 ≤ N and that A has full rank,
conditions that are typically satisfied in practice
(then, p is unique least-squares solution)

other norms – such as L1 – are used in practice
but don’t have a closed-form solution – several
MATLAB toolboxes exist for such problems

Euclidean L2 norm

equivalent solutions: p = (A'A)\(A'*y)
p = pinv(A)*y

polynomial
regression

For straight line fits, the equivalent solution satisfies:

(A'A)*p = (A'*y)

and leads to the following 2x2 linear system for the
straight-line parameters, p = [a,b]' (i.e., y=a*x+b)

p = [sum(xi.^2), sum(xi); ...
sum(xi), N] \ [sum(xi.*yi); sum(yi)]

p = [xi,ones(N,1)] \ yi % is much simpler

regression
with other
basis functions

The data model is assumed to be a linear
combination of known basis functions,
such as exponential, trigonometric, etc:

and the objective is to determine the coefficients
ci to fit N data points {xi, yi}, i = 1, 2,…, N,
where again we must assume M+1 ≤ N

Polynomial fitting is a special case using the
monomial basis: 1, x, x^2, …, x^M

Design procedure: set up the design matrix A and
solve the overdetermined linear system A c = y

Example: M = 3, N = 5

A c = y
c = A \ y

regression
with other
basis functions

regression
with other
basis functions

Example 1: modeling of temperature
variations in a city over 24 months

ti yi

0 42.7
1 46.7
2 59.1
3 69.5
4 81.0
5 80.7
6 83.2
7 72.0
8 67.1
9 52.6

10 43.7
11 40.9
12 38.6
13 48.8
14 57.2
15 71.2
16 77.5
17 79.8
18 82.3
19 76.3
20 61.5
21 53.0
22 41.5
23 37.3

basis functions

A = [ones(N,1), cos(2*pi*ti/12), sin(2*pi*ti/12)];

c = A\yi

c =
61.0083
-20.3333
8.5565

f = @(t) c(1) + c(2) * cos(2*pi*t/12) + ...
c(3) * sin(2*pi*t/12);

t = linspace(0,24,241);

plot(t,f(t),'r', ti,yi,'b.','markersize',25);

24x3 design matrix

estimated model

0 3 6 9 12 15 18 21 24
30

40

50

60

70

80

90

months

de
gr

ee
s

 (
F

o)

Example 2:
xi yi

1.0 5.7
1.4 4.8
1.9 4.7
2.1 4.9
2.7 5.0
3.0 5.3
3.3 5.6
3.9 6.3
4.2 6.4

basis functions

A = [1./xi, xi];
c = A\yi
c =

4.3350
1.2950

x = linspace(1,4.2, 100);
y = c(1)./x + c(2)*x;

plot(x,y,'r-', xi,yi,'b.');

1 2 3 4
4.5

5

5.5

6

6.5

x

y

Example 2:

multivariate
regression

A c = y
c = A \ y

predictors

observations
i

j

% C T I Y Rating Player
% --
63.8827 5.32151 2.63612 7.65065 94.0 % Joe Montana
59.5616 6.02740 3.42466 7.63096 89.3 % Dan Marino
56.7177 5.51422 3.32604 8.03063 87.3 % Boomer Esiason
57.8466 5.94652 4.08163 7.33920 83.7 % Dave Krieg
56.9642 5.17241 3.68492 7.67410 83.416 % Roger Staubach
58.4536 3.86598 2.42268 7.15876 83.415 % Bernie Kosar
59.6271 3.89137 2.75638 7.12971 83.0 % Ken O'Brien
59.2422 4.64983 3.61653 7.40586 82.74 % Jim Kelly
57.6277 4.31335 2.85442 7.22201 82.68 % Neil Lomax
57.0859 5.98311 4.43454 7.56077 82.6 % Sonny Jurgensen
57.0970 6.38867 4.89174 7.67469 82.6 % Len Dawson
59.3073 4.40223 3.57542 7.33810 81.9 % Ken Anderson
59.6949 5.25424 4.47458 7.44373 81.7 % Danny White
57.4151 4.82693 4.38234 7.84948 80.5 % Bart Starr
56.9971 5.28839 4.11319 7.26813 80.4 % Fran Tarkenton
58.4635 3.97135 3.25521 7.15299 80.3 % Tony Eason
58.8330 4.53248 4.31834 7.68023 80.2 % Dan Fouts
57.3457 4.20535 3.60459 7.28291 79.2 % Jim McMahon
56.0564 4.86084 3.95923 7.13054 78.2 % Bert Jones
54.5700 5.59198 4.87852 7.75916 78.2 % Johnny Unitas

% x1 x2 x3 x4 y
reverse-engineering
of the NFL ratingssee week-6 homework

multivariate
regression

Y = load('NFL0.dat'); % on sakai

y = Y(:,5);
A = [ones(size(Y,1),1), Y(:,1:4)];

c = A\y
c =

1.9120
0.8389
3.3323
-4.1573
4.1428

c = [46 20 80 -100 99]/24;

c ≈ [50 20 80 -100 100]/24;
see week-6
homework

design matrix

data smoothing ys = smooth(y);
ys = smooth(y,span);
ys = smooth(y,method);
ys = smooth(y,span,method);

method = 'moving' (default, with span=5)
'loess', 'rloess'
'lowess', 'rlowess'
'sgolay'

data smoothing

A = load('taveGL2v.dat');

t = A(:,1); y = A(:,end);

ys = smooth(y,15);
figure; plot(t,y,'r:', t,ys,'b-');

ys = smooth(y,25);
figure; plot(t,y,'r:', t,ys,'b-');

ys = smooth(y,0.2,'loess');
figure; plot(t,y,'r:', t,ys,'b-');

ys = smooth(y,0.3,'loess');
figure; plot(t,y,'r:', t,ys,'b-');

global temperature data (on sakai)

1860 1890 1920 1950 1980 2010

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

year

C
o

Global temperature - loess smoothing

 data
 span=0.2

1860 1890 1920 1950 1980 2010

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

year

C
o

Global temperature - loess smoothing

 data
 span=0.3

1860 1890 1920 1950 1980 2010

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

year

C
o

Global temperature - MA smoothing

 data
 span=15

1860 1890 1920 1950 1980 2010

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

year

C
o

Global temperature - MA smoothing

 data
 span=25

digital
filtering

y = filter(b,a,x);

output
signal

b, a, filter
coefficients

x = [x0,x1,x2,..., xN] = length-N signal
y = [y0,y1,y2,..., yN] = length-N signal

b = [b0,b1,b2,..., bM] = order-M filter
a = [1, a1,a2,..., aM] = order-M filter

transfer
function

input
signal

digital
filtering

transfer
function

Example 1: Second-order filter, M = 2

time-domain implementation
by input/output difference equation,

equivalent to: y = filter(b,a,x)

digital
filtering

Example 2: Bandpass filter, M = 2

0 100 200 300
-3

-2

-1

0

1

2

3

time samples, n

filtered signal, y(n)

 y(n)
 s(n)

0 100 200 300
-3

-2

-1

0

1

2

3

time samples, n

noisy input signal, x(n)

applications:
radio, TV, cell phone receivers

digital
filtering

Example 2: Bandpass filter, M = 2

transfer
function

filter design

R = 0.99;
f0 = 500; fs = 10000; w0 = 2*pi*f0/fs;

G = (1-R)*sqrt(1-2*R*cos(2*w0) + ...
R^2)/2/sin(w0);

a1 = -2*R*cos(w0); a2 = R^2;

a = [1, a1, a2], b = G*[1, 0, -1]

a =
1.0000 -1.8831 0.9801

b =
0.0100 0 -0.0100

0 500 1000 1500
0

0.5

1

f, Hz

|
H

(f
)|

frequency response

f = linspace(0,1500,1501); w = 2*pi*f/fs;

H = abs(freqz(b,a,w)); % frequency response

>> doc freqz

digital
filtering

desired signal

random noise

N=300; n = 0:N-1;

s = cos(w0*n);
rng(200); v = randn(1,N);

x = s + v; % noisy signal

y = filter(b,a,x); % filtering

figure; plot(n,x, 'b-');

figure; plot(n,y,'r-', n,s, 'b:');

0 100 200 300
-3

-2

-1

0

1

2

3

time samples, n

filtered signal, y(n)

 y(n)
 s(n)

0 100 200 300
-3

-2

-1

0

1

2

3

time samples, n

noisy input signal, x(n)
digital
filtering

digital
filtering

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

t, sec

 noisy ECG
 filtered ECG

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

t, sec

 noisy ECG
 noise-free ECG

Example 3: Removing 60 Hz
interference from an ECG
using a notch filter at 60 Hz

0 30 60 90 120 150
0

0.5

1

f

|
H

(f
)|

Frequency Response

digital
filtering

Example 3: ECG + 60 Hz interference

f0 = 60; fs = 1000; T = 1/fs; % sampling rate

N = 500; M = 3; % samples per beat, no. beats

s = sgolayfilt(ecg(N),0,15); % simulated ECG
s = [s,s,s]; % 3 beats

n = 0:length(s)-1; tn = n*T; % sampling times

x = s + 0.5*cos(2*pi*f0*tn);
% ECG + 60 Hz interference

w0 = 2*pi*f0/fs; % digital frequency
R = 0.995; % pole radius

G = (1-2*R*cos(w0)+R^2)/(2-2*cos(w0)); % gain

a = [1, -2*R*cos(w0), R^2]; % denominator
b = G*[1, -2*cos(w0), 1]; % numerator

f = linspace(0,150,601); w = 2*pi*f/fs;

H = abs(freqz(b,a,w)); % frequency response

plot(f,H,'b', f0,0,'r.','markersize',16);

y = filter(b,a,x); % filter noisy ECG

plot(tn,x,'r:', tn,s,'k-'); % noisy ECG
plot(tn,x,'r:', tn,y,'k-'); % filtered ECG

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

t, sec

 noisy ECG
 filtered ECG

0 30 60 90 120 150
0

0.5

1

f

|
H

(f
)|

Frequency Response

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

t, sec

 noisy ECG
 noise-free ECG

notch filter at 60 Hz

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

