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—| Week 12 - Numerical methods — data fitting — part 11 (ch. 12)

Weekly Topics

Week 1 - Basics — variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics — operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)

Week 4 - Plotting — 2D and 3D plots (ch. 5)

Week 5 - User-defined functions (ch. 6)

Week 6 - Input-output processing (ch. 7)

Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra — solving linear equations (ch. 9)

Week 9 - Strings, structures, cell arrays (ch. 10)

Week 10 - Symbolic math (ch. 11)

Week 11 - Numerical methods — data fitting (ch. 12)

Textbook: H. Moore, MATLAB for Engineers, 2" ed., Prentice Hall, 2009



Numerical Methods

Data Fitting — part |1

data fitting with polynomials — polyfit, polyval
examples: Moore’s law,

Hank Aaaron,

US census data

least-squares polynomial regression
least-squares with other basis functions
examples: exponential models
trigonometric basis functions
trigonometric with polynomial trends (CO2 data)




Polynomial data fitting - review polyfit, polyval

M—1

P(x) = pixM + pox + - -+ pMX+ PM+1

p = [p1, p2,..., PM™m, pf‘r’f—i-l] >>S dOC pOnyit
>> doc polyval

P(x) =5x* —2x° + x° +4x + 3

p: [5! _2! 1! 45 3]

T

polynomial P(x) is represented by its coefficients p




Given N data points {xi, yi}, 1=1,2,...,N, find an M-th degree
polynomial that best fits the data — (polyfit)

% design procedure: M = polynomial order
X1 = [x1,x2,...,xN]; if N = M+1, the polynomial
yi = [yl,y2,...,yN]; Interpolates the data

p = polyfit(xi,yi,M); | |if N> M+1, the polynomial
provides the best fit In
y = polyval(p,Xx); a least-squares sense

evaluate P(x) at a given vector X




< X

X =

for
P

y

[1s 31 47 61 9];
14, 4, 7, 11, 19];

linspace(0,10,101);

M

= [1,2,3,4]

polyfit(xi,yi,M);

polyval(p,x);

figure;
plot(x,y,"r-", xi1,y1,"b.", "markersize",b25);
yaxis(-2,22,0:5:20); xaxi1s(0,10,0:2:10);
xlabel ("x"); title("polynomial fit");
legend([" fit, {\itM} = ",num2str(M)], ...

end

" data”,

"location®,"se");



polynomial fit

— fit, M =3
0 ® data

10

polynomial fit

polynomial fit

0 ® data

10
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Hank Aaron's Home Run Output

— linear fit |
* data

t
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A = load("aaron.dat");

ti = A(:,2); H = A(:,3);
y1l = cumsum(H);

p = polyfit(ti,yr,l)

p:

37.2617 -39.8474

t = linspace(1,20, 101);
polyval(p,t);

<
I

plot(t,y,"r-", ...
ti,yl,"b.", ...
"markersize", 18);

Hank Aaron's Home Run Output

linear fit |
* data

0 2 4 6 8 1012 14 16 18 20
t
Hank Aaron's Home Run Output

700" *

y =37x-37 |
* data
O o I

0 2 4 6 8 1012 14 16 18 20
t



Given N data points {xi, yi}, 1=1,2,...,N, the following data

models can be reduced to linear fits using an appropriate

transformation of the data:

linear: y=ax +b

exponential: y = be™ = log(y)= ax +log(b)
exponential: y = b 2% = log,(y)= ax +log,(b)
exponential: y = bxe™ = log(y/x)= ax + log(b)

power: y = bx“ = log(y)= a log(x)+log(b)
>> p = polyfit(xi,log(yi),1); % exponential
>>y = exp(polyval(p,x)); % y=exp(a*x+log(b))
>> a = p(l);
>> b = exp(p(2)); % so that y = b*exp(a*x)
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-300e+003
-500e+003
-500e+003
-900e+004
-340e+005
- 750e+005
-200e+006
-100e+006
-300e+006
-500e+006
-800e+006
-500e+006
-130e+007
-200e+007
-200e+007
-430e+007
-059e+008
-200e+008
-920e+008
-410e+008
-910e+008
-820e+008
-810e+008
-890e+008
- 700e+009
-000e+009

Moore’s law from set-4

0 transistor count

10

. . . ﬁt
9 i i : * data

1970 1980 1990 2000 2010
year

fitted model:
f(t) = b*2.Ma*(t-tl));




Y = load("transistor_count.dat");

y = Y(,1); t=Y(,2);

tl = t(1);

p = polyfit(t-tl, log2(y), 1);
p:

0.5138 10.5889 % b = 2™ (2) = 1.5402e+003
T = 2.M(polyval(p,t-tl));

semilogy(t,f,"r-", t,y,"b.", "markersize",18)

fitted model:
f(t) = b * 2.~(a*(t-tl)) = 2.~ (a*(t-tl)+log2(b));

h a = p(l), log2(b) = p(2) --> b = 2"(p(2))




%
%
%
%

source: Wikipedia
US population in millions

ti yi

1790 3.929
1800 5.237
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192

US Population
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A = load("uspop.dat®);
ti = A(:L,D); yi = A(:,2);
p = polyfit(ti,log(yi),2) % quadratic fit

p:
-0.0001 0.2653 -266.4672

t = linspace(1790, 2010, 201);
y = exp(polyval(p,t));

figure; plot(t log(y), "r-", ..
,log(y1),"b." 'markerS|ze ,18);

figure; plot(t, vy,"r-", ]
ti,yl,"b.","markersize”,18);




A = load("uspop.dat®);

t1 = A(:L,D); yvi = A(:,2); t1 = t1(1);

p = polyfit(ti,yi,2) % quadratic fit
pl = polyfit(ti-tl,y1,2) % t1 = 1790

t = linspace(1790, 2010, 201);

y = polyval(p,t);

yl = polyval(pl,t-tl); % shifted origin
norm(y-yl) % = 7.7100e-011

plot(t, y,"r-", ti,yi,"b.","markersize”,18);
>> num2str(p°,pl™], "%1l2.2e")

ans =

6.78e-003 6.78e-003
-2.44e+001 -1.32e-001
2.20e+004 6.51e+000
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How does polyfit work? Consider a straight-line polynomial
fit, y = ax+Db, to N data points {xi, yi}, i=1,2,....N | Fglelfsslel8

overdetermined & inconsistent linear least-squares
system of 5 equations in 2 unknowns solution
ﬂXlerlYl X1 1 Vi
ax,+b=y, X2 1 V2
axs+b=y; = X3 1 [z] val, p[Z]
axs+b=y, Xq 1 V4
axs +b=ys X5 1 Vs

A is the design matrix | A J) — ); p=A\y




xt = [1, 3, 4, 6, 9]7; % column vectors
yi = [4, 4, 7, 11, 19]";
A = [x1, ones(5,1)]; % design matrix
p = A\yl
p:

1.9892 -

-0.1505 15
p = polyfit(xi,yi,1l) > 10/
P = 6|

1.9892 -0.1505

0 | | |

X = linspace(1,9,91); A
y = polyval(p,x);

plot(x,y,"r", xi,yi,"b.","markersize”,20);



Quadratic fit, y=ax2 + bx + ¢

!

axi +bx;+c=y X7 x; 1 V1
axs+bx,+c=y X5 xo 1| |al Vo
ax5;+bxs+c=y; = |x3x31||b|l=]y;
axi;+bxs+c=y, X; x4 1] |c V4
ax: +bxs+c=y; X2 x5 1| Vs

I
p=A\y Ap=y

polynomial

to N data points {Xi, Vi}, i=1, 2,..., N regression
overdetermined & inconsistent linear least-squares
system of 5 equations in 3 unknowns solution




xt = [1, 3, 4, 6, 9]7; % column vectors
vi = [4, 4, 7, 11, 19]°;
A= [x1.7"2, x1, X1.70]; % design matrix
P = A\yl
p —
0.1905 ”
0.0476 15/
3.3333
> 107
p = polyfit(xi,yi,2)
£l
p — °
0.1905 0.0476 3.3333 | | | |
0 2 4 6 8 10
X = linspace(1,9,91); "
y = p(1)*x.”2 + p(2)*x + p(3); % polyval(p,Xx)

plot(x,y,"r", xi,yi,"b.","markersize”,20);



least-squares

: olynomial
Euclidean L2 norm POy

solution

regression

IAp-yl=min = p=A\Yy

(A"AN(A™™Y)
pinv(A)*y

assumes that M+1 < N and that A has full rank,
conditions that are typically satisfied in practice
(then, p Is unigue least-squares solution)

equivalent solutions: p
P

other norms — such as L1 — are used In practice
but don’t have a closed-form solution — several
MATLAB toolboxes exist for such problems




The data model is assumed to be a linear regression
combination of known basis functions, with other
such as exponential, trigonometric, etc: basis functions

y =co+cifi(X)+cofa (X)+ -+ - + cpmfm (X)

and the objective is to determine the coefficients
Cj to fit N data points {Xi, Yi},1=1, 2,..., N,
where again we must assume M+1 <N

Polynomial fitting is a special case using the
monomial basis: 1, x, X2, ..., x*M

Design procedure: set up the design matrix A and Ac=Yy
solve the overdetermined linear system Ac =y c=A\y




Example: M=3, N=5 regression

y =Co+ Cif1 (X)+Cof2(X)+c3fz (X with other
basis functions
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1 fi(x1) fo(x1) f3(x1) | Yo Y1 |
L filxe) fa0e) fs0e) |0y Ac=vy
1 fi1(x3) f2(x3) [3(Xx3) o | =13 B
1 f1(Xx4) f2(xq) [3(Xxy4) C2 )2 _A\y
1 fi(xs) f2(xs) fs(xs) |57 |ys

t t t

design matrix, A | | coeffs, c | | data, y




Yy =exp(co+ c1f1(x)+caf2(X) +c3f3(x))

y = N/Co + C1f1(X) +caf2 (X) +C3f3(X)
1
Co—i—lel +C’3f')(X)+C3f3

y =

Examples of
other models
reducible to the
standard form

y\/l+ LX)
Co + lel (X)—i—Cﬁfﬁ +C3f3(X)

log (y) = co + c1f1(X)+caf2(X) +caf3 (X

V= = o+ c1f1(x) +cof2 (X) +03f3 (X

1
)_/—CO+lel )+Cof 2 (X)+Caf3 (X

= Co + C1f1(X)+cof 2 (X) +C3f3 (X
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regression

with other
basis functions

Example 1. modeling of temperature
variations in a city over 24 months

21Tt . (2Tt
VI(I[)= Cy+ Cy COS 12 + > sin ¥

basis functions




N = length(ti);

A = Jones(N,1), cos(Z2*pi1*ti1/12), sin(2*pi1*ti1/12)];
T

c = Ayl 24x3 design matrix
C =
61.0083
-20.3333 | estimated parameters
8.5565 estimated model

'
f=0(t) c(l) + c(2) * cos(2*p1*t/12) + ...
c(3) * sIin(2*p1*t/12);

t = linspace(0,24,241);
plot(t,f(t),"r*, ti,yi1,"b.","markersize”,b25);
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C
Example 2: y = ;1 +CoT

basis functions
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A= [1./7x1, Xi1];
c = A\yi
C =
4 _.3350
1.2950
X = linspace(1,4.2, 100);
y = c(l)./x + c(2)*x; «

plot(Xx,y,"r-", xXi,yi1,"b.");

estimated model




C1
Example 2: y = . +CoT

6.5

4.5




1 1
Example 3: ¥ = & = -
— +t ez Y
X

basis functions

A= [1./x1, Xi];
c = A\(1./7y1)
C =
4.3012
1.2858
X = linspace(1,4.2, 100);
y =1./7(c(1)./x + c(2)*X); -

P OWWWNDNRELPPREPPR
NOWO~NPF, OM~MO

C OO0 0O0O0O00O0O0

plot(Xx,y,"r-", xXi,yi1,"b.");

estimated model




1 1 c
Example 3: y = & = —:—1+c29:

— +Cox y
T

0.23}

0.2}

0.17

0.14
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Example 4: V =Vge™

log(V) = —at+1log(Vo) =p1t+ po

p = polyfit(t;, log(Vi), 1)
p = [pi1, p2]

—a=p1, logVo=po

a=-pi, Vo=exp(pz)




A = load("capacitor.dat”);
ti = A(:,1); Vi = A(:,2);

p = polyfit(ti,log(Vi),1); % p = [-2.92,0.70];
a = -p(1), VO = exp(p(2))
a = 2.5
2.9170
VO =
2.0154 .
t = linspace(0,1,101); ~
V = exp(polyval(p,t));
h V = exp(p(L)*t+p(2));

plot(t,V, " r-", ...
ti,Vi,"b.", ...
"markersize®,18);



Example 5. copper data

1 28._.7
2 57.3
3 85.5
4 113 _
; 113 set-11
6 159 model
V4 177 l
8 189 1
o 1o K= : :
11 193 T-I—ClT-l-CgT +c31
12 185
13 176
14 166 1 CO
15 156 L 2 3
15 156 certal+al +al
18 124 o T T /
20 105
25 68 basis functions
30 43
35 29
40 20.5

45 15.3



Y = load("copper.dat”);

t1 = Y(:,1);
ki = Y(:,2);
yi = 1_/Ki;
A=J1./7ta1, t1, t1.7°2, t1.7"3]; % basis

c = A\yli,; % f1t 1/k to model

—
[

l1i1nspace(0,50,101);

k = T./(c(1) + c(Q)*T.~2 + c(3)*T."3 + ...
C(4)*T."4);

plot(T,k,"r-", ti,ki,"b.","markersize”,18);
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year month decimal
1980 1 1980.042
1980 2 1980.125
1980 3 1980.208
1980 4 1980.292
1980 5 1980.375
1980 6 1980.458
1980 7 1980.542
1980 8 1980.625
1980 9 1980.708

2011 4 2011.542
2011 8 2011.625
2011 9 2011.708

average

389.
387.
388.

Example 6: CO2 emissions

04
76
04

390.
390.
390.

27
48
80

file: co2.dat

on sakali

ftp://ftp.cmdl .noaa.gov/ccg/co2/trends/co2_mm gl .txt
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Y = load("co2.dat"); % fi1le on sakail
vy = Y(:,4);

t = (O:length(y)-1)";

ty = t/12 + 1980; % rescale time

figure; plot(ty, y, "b-");
xax1s(1980, 2012, 1980:10:2010);
xlabel ("year "); ylabel ("C0_2");

cyclical component

model | * |

. 7

5 3 27Tt . (2Tt
y:Cg—i—Clt—l—Cgt +C3t + C4 COS ? + C5 SIn ?
| |

trend component

basis functions




c = [t.”0, t, t.~2, t.~3, ...
cos(2*pi*t/12), sin(@*pi*t/12)] \ y;

T=00) c() + c(D*t + c(3)*t."2 + ...
c(4)*t."3; % trend

C = @(t) c(®B)*cos(2*p1*t/12) + ...
c(6)*siIn(2*p1*t/12), % cycle

figure; plot(ty, y, "b-", ty,T(t),"g-",
ty, T(D+C(L),"r-");

xax1s(1980, 2012, 1980:10:2010);

xlabel ("year "); ylabel("CO 2%)

legend(® data®, " trend", " trend+cycle”, ...
"location”,"nw");
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