
Rutgers University
School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis
ECE Department

orfanidi@ece.rutgers.edu

week 12

Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output processing (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 - Numerical methods – data fitting – part II (ch. 12)

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

Numerical Methods
Data Fitting – part II

• data fitting with polynomials – polyfit, polyval
• examples: Moore’s law,
• Hank Aaaron,
• US census data
• least-squares polynomial regression
• least-squares with other basis functions
• examples: exponential models
• trigonometric basis functions
• trigonometric with polynomial trends (CO2 data)

>> doc polyfit
>> doc polyval

Polynomial data fitting - review polyfit, polyval

polynomial P(x) is represented by its coefficients p

Given N data points {xi, yi}, i=1,2,…,N, find an M-th degree
polynomial that best fits the data – (polyfit)

% design procedure:

xi = [x1,x2,...,xN];
yi = [y1,y2,...,yN];

p = polyfit(xi,yi,M);

y = polyval(p,x);

evaluate P(x) at a given vector x

M = polynomial order

if N = M+1, the polynomial
interpolates the data

if N > M+1, the polynomial
provides the best fit in
a least-squares sense

xi = [1, 3, 4, 6, 9];
yi = [4, 4, 7, 11, 19];

x = linspace(0,10,101);

for M = [1,2,3,4]
p = polyfit(xi,yi,M);

y = polyval(p,x);

figure;
plot(x,y,'r-', xi,yi,'b.', 'markersize',25);
yaxis(-2,22,0:5:20); xaxis(0,10,0:2:10);
xlabel('x'); title('polynomial fit');
legend([' fit, {\itM} = ',num2str(M)],...

' data', 'location','se');
end

0 2 4 6 8 10

0

5

10

15

20

x

polynomial fit

 fit, M = 1
 data

0 2 4 6 8 10

0

5

10

15

20

x

polynomial fit

 fit, M = 2
 data

0 2 4 6 8 10

0

5

10

15

20

x

polynomial fit

 fit, M = 3
 data

0 2 4 6 8 10

0

5

10

15

20

x

polynomial fit

 fit, M = 4
 data

% year ti H
% ---------------
1954 1 13
1955 2 27
1956 3 26
1957 4 44
1958 5 30
1959 6 39
1960 7 40
1961 8 34
1962 9 45
1963 10 44
1964 11 24
1965 12 32
1966 13 44
1967 14 39
1968 15 29
1969 16 44
1970 17 38
1971 18 47
1972 19 34
1973 20 40

from set-6
0 2 4 6 8 10 12 14 16 18 20

0

100

200

300

400

500

600

700

800

t

to
ta

ls

Hank Aaron's Home Run Output

 linear fit
 data

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

t

to
ta

ls

Hank Aaron's Home Run Output

 y = 37x-37
 data

A = load('aaron.dat');

ti = A(:,2); H = A(:,3);
yi = cumsum(H);

p = polyfit(ti,yi,1)

p =
37.2617 -39.8474

t = linspace(1,20, 101);
y = polyval(p,t);

plot(t,y,'r-', ...
ti,yi,'b.', ...
'markersize', 18);

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

t

to
ta

ls

Hank Aaron's Home Run Output

 linear fit
 data

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

t

to
ta

ls

Hank Aaron's Home Run Output

 y = 37x-37
 data

Given N data points {xi, yi}, i=1,2,…,N, the following data
models can be reduced to linear fits using an appropriate
transformation of the data:

>> p = polyfit(xi,log(yi),1); % exponential
>> y = exp(polyval(p,x)); % y=exp(a*x+log(b))
>> a = p(1);
>> b = exp(p(2)); % so that y = b*exp(a*x)

1970 1980 1990 2000 2010
10

2

10
4

10
6

10
8

10
10

year

co
u

n
t

transistor count

 fit
 data

yi ti

2.300e+003 1971
2.500e+003 1972
4.500e+003 1974
2.900e+004 1979
1.340e+005 1982
2.750e+005 1985
1.200e+006 1989
3.100e+006 1993
4.300e+006 1996
7.500e+006 1997
8.800e+006 1997
9.500e+006 1999
2.130e+007 1999
2.200e+007 1999
4.200e+007 2000
5.430e+007 2003
1.059e+008 2003
2.200e+008 2003
5.920e+008 2004
2.410e+008 2006
2.910e+008 2006
5.820e+008 2006
6.810e+008 2006
7.890e+008 2007
1.700e+009 2006
2.000e+009 2008

Moore’s law from set-4

fitted model:
f(t) = b*2.^(a*(t-t1));

Y = load('transistor_count.dat');

y = Y(:,1); t = Y(:,2);

t1 = t(1);

p = polyfit(t-t1, log2(y), 1);

p =
0.5138 10.5889 % b = 2^p(2) = 1.5402e+003

f = 2.^(polyval(p,t-t1));

semilogy(t,f,'r-', t,y,'b.', 'markersize',18)

fitted model:
f(t) = b * 2.^(a*(t-t1)) = 2.^(a*(t-t1)+log2(b));

% a = p(1), log2(b) = p(2) --> b = 2^(p(2))

1800 1840 1880 1920 1960 2000
1

2

3

4

5

6

t

lo
g(

po
p)

US Population

 quadratic fit
 data

1800 1840 1880 1920 1960 2000
0

100

200

300

400

t

po
pu

la
ti

on
, m

ill
io

ns

US Population

 fit
 data

% source: Wikipedia
% US population in millions
%
% ti yi
% -------------
1790 3.929
1800 5.237
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.443
1870 38.558
1880 49.371
1890 62.980
1900 76.212
1910 92.229
1920 106.022
1930 123.202
1940 132.165
1950 151.326
1960 179.323
1970 203.212
1980 226.546
1990 248.710
2000 281.422
2010 308.746

A = load('uspop.dat');

ti = A(:,1); yi = A(:,2);

p = polyfit(ti,log(yi),2) % quadratic fit

p =
-0.0001 0.2653 -266.4672

t = linspace(1790, 2010, 201);
y = exp(polyval(p,t));

figure; plot(t, log(y), 'r-', ...
ti,log(yi),'b.','markersize',18);

figure; plot(t, y,'r-', ...
ti,yi,'b.','markersize',18);

A = load('uspop.dat');

ti = A(:,1); yi = A(:,2); t1 = ti(1);

p = polyfit(ti,yi,2) % quadratic fit
p1 = polyfit(ti-t1,yi,2) % t1 = 1790

t = linspace(1790, 2010, 201);
y = polyval(p,t);
y1 = polyval(p1,t-t1); % shifted origin

norm(y-y1) % = 7.7100e-011

plot(t, y,'r-', ti,yi,'b.','markersize',18);

>> num2str([p',p1'],'%12.2e')

ans =
6.78e-003 6.78e-003

-2.44e+001 -1.32e-001
2.20e+004 6.51e+000

1800 1840 1880 1920 1960 2000
0

100

200

300

400

t

po
pu

la
ti

on
, m

ill
io

ns
US Population

 fit
 data

1800 1840 1880 1920 1960 2000
0

100

200

300

400

t

po
pu

la
ti

on
, m

ill
io

ns

US Population

 fit
 data

exponential fit

polynomial fit

A p = y p = A \ y

How does polyfit work? Consider a straight-line
fit, y = ax+b, to N data points {xi, yi}, i=1,2,…,N

polynomial
regression

overdetermined & inconsistent linear
system of 5 equations in 2 unknowns

least-squares
solution

A is the design matrix

0 2 4 6 8 10
0

5

10

15

20

x
y

xi = [1, 3, 4, 6, 9]'; % column vectors
yi = [4, 4, 7, 11, 19]';

A = [xi, ones(5,1)]; % design matrix
p = A\yi
p =

1.9892
-0.1505

p = polyfit(xi,yi,1)
p =

1.9892 -0.1505

x = linspace(1,9,91);
y = polyval(p,x);

plot(x,y,'r', xi,yi,'b.','markersize',20);

A p = yp = A \ y

overdetermined & inconsistent linear
system of 5 equations in 3 unknowns

least-squares
solution

Quadratic fit, y = ax2 + bx + c
to N data points {xi, yi}, i=1, 2,…, N

polynomial
regression

0 2 4 6 8 10
0

5

10

15

20

x
y

xi = [1, 3, 4, 6, 9]'; % column vectors
yi = [4, 4, 7, 11, 19]';

A = [xi.^2, xi, xi.^0]; % design matrix
p = A\yi
p =

0.1905
0.0476
3.3333

p = polyfit(xi,yi,2)
p =

0.1905 0.0476 3.3333

x = linspace(1,9,91);
y = p(1)*x.^2 + p(2)*x + p(3); % polyval(p,x)

plot(x,y,'r', xi,yi,'b.','markersize',20);

least-squares
solution

||A p – y||2 = min ⇒ p = A \ y

assumes that M+1 ≤ N and that A has full rank,
conditions that are typically satisfied in practice
(then, p is unique least-squares solution)

other norms – such as L1 – are used in practice
but don’t have a closed-form solution – several
MATLAB toolboxes exist for such problems

Euclidean L2 norm

equivalent solutions: p = (A'A)\(A'*y)
p = pinv(A)*y

polynomial
regression

regression
with other
basis functions

The data model is assumed to be a linear
combination of known basis functions,
such as exponential, trigonometric, etc:

and the objective is to determine the coefficients
ci to fit N data points {xi, yi}, i = 1, 2,…, N,
where again we must assume M+1 ≤ N

Polynomial fitting is a special case using the
monomial basis: 1, x, x^2, …, x^M

Design procedure: set up the design matrix A and
solve the overdetermined linear system A c = y

A c = y
c = A \ y

Example: M = 3, N = 5

A c = y
c = A \ y

regression
with other
basis functions

design matrix, A data, ycoeffs, c

Examples of
other models
reducible to the
standard form

regression
with other
basis functions

Example 1: modeling of temperature
variations in a city over 24 months

ti yi

0 42.7
1 46.7
2 59.1
3 69.5
4 81.0
5 80.7
6 83.2
7 72.0
8 67.1
9 52.6

10 43.7
11 40.9
12 38.6
13 48.8
14 57.2
15 71.2
16 77.5
17 79.8
18 82.3
19 76.3
20 61.5
21 53.0
22 41.5
23 37.3

basis functions

N = length(ti);

A = [ones(N,1), cos(2*pi*ti/12), sin(2*pi*ti/12)];

c = A\yi

c =
61.0083
-20.3333
8.5565

f = @(t) c(1) + c(2) * cos(2*pi*t/12) + ...
c(3) * sin(2*pi*t/12);

t = linspace(0,24,241);

plot(t,f(t),'r', ti,yi,'b.','markersize',25);

24x3 design matrix

estimated parameters
estimated model

0 3 6 9 12 15 18 21 24
30

40

50

60

70

80

90

months

de
gr

ee
s

 (
F

o)

Example 2:
xi yi

1.0 5.7
1.4 4.8
1.9 4.7
2.1 4.9
2.7 5.0
3.0 5.3
3.3 5.6
3.9 6.3
4.2 6.4

basis functions

A = [1./xi, xi];
c = A\yi
c =

4.3350
1.2950

x = linspace(1,4.2, 100);
y = c(1)./x + c(2)*x;

plot(x,y,'r-', xi,yi,'b.');

estimated model

1 2 3 4
4.5

5

5.5

6

6.5

x

y

Example 2:

xi yi

1.0 0.18
1.4 0.21
1.9 0.21
2.1 0.20
2.7 0.20
3.0 0.19
3.3 0.18
3.9 0.16
4.2 0.16

basis functions

A = [1./xi, xi];
c = A\(1./yi)
c =

4.3012
1.2858

x = linspace(1,4.2, 100);
y = 1./(c(1)./x + c(2)*x);

plot(x,y,'r-', xi,yi,'b.');

estimated model

Example 3:

1 2 3 4
0.14

0.17

0.2

0.23

x

y

Example 3:

% ti Vi
% ------------
0.00 2.0684
0.05 1.6970
0.10 1.4921
0.15 1.2633
0.20 1.1564
0.25 0.9048
0.30 0.8943
0.35 0.6919
0.40 0.7459
0.45 0.5832
0.50 0.5065
0.55 0.4657
0.60 0.2966
0.65 0.3131
0.70 0.2082
0.75 0.2399
0.80 0.1516
0.85 0.0928
0.90 0.1930
0.95 0.2144
1.00 0.1036

Example 4:

set-11

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

t

V
(t

)

A = load('capacitor.dat');

ti = A(:,1); Vi = A(:,2);

p = polyfit(ti,log(Vi),1); % p = [-2.92,0.70];

a = -p(1), V0 = exp(p(2))

a =
2.9170

V0 =
2.0154

t = linspace(0,1,101);
V = exp(polyval(p,t));

% V = exp(p(1)*t+p(2));

plot(t,V,'r-',...
ti,Vi,'b.',...
'markersize',18);

Example 5: copper data

set-11

Ti ki

1 28.7
2 57.3
3 85.5
4 113
5 138
6 159
7 177
8 189
9 195

10 196
11 193
12 185
13 176
14 166
15 156
16 145
18 124
20 105
25 68
30 43
35 29
40 20.5
45 15.3

basis functions

model

Y = load('copper.dat');

ti = Y(:,1);
ki = Y(:,2);
yi = 1./ki;

A = [1./ti, ti, ti.^2, ti.^3]; % basis

c = A\yi; % fit 1/k to model

T = linspace(0,50,101);

k = T./(c(1) + c(2)*T.^2 + c(3)*T.^3 + ...
c(4)*T.^4);

plot(T,k,'r-', ti,ki,'b.','markersize',18);

0 10 20 30 40 50
0

50

100

150

200

T

Thermal Conductivity

k

 fit
 data

Example 6: CO2 emissions

% year month decimal average trend
% ---
1980 1 1980.042 338.33 337.70
1980 2 1980.125 339.04 337.99
1980 3 1980.208 339.36 338.02
1980 4 1980.292 339.74 338.12
1980 5 1980.375 340.16 338.64
1980 6 1980.458 339.73 338.94
1980 7 1980.542 338.20 339.05
1980 8 1980.625 336.99 339.24
1980 9 1980.708 336.81 339.20
1980 10 1980.792 337.57 338.91
1980 11 1980.875 338.69 339.03
1980 12 1980.958 339.41 339.19
...

2011 7 2011.542 389.04 390.27
2011 8 2011.625 387.76 390.48
2011 9 2011.708 388.04 390.80

file: co2.dat
on sakai

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_gl.txt

1980 1990 2000 2010
330

340

350

360

370

380

390

400

year

C
O

2

Y = load('co2.dat'); % file on sakai

y = Y(:,4);
t = (0:length(y)-1)';
ty = t/12 + 1980; % rescale time

figure; plot(ty, y, 'b-');
xaxis(1980, 2012, 1980:10:2010);
xlabel('year '); ylabel('CO_2');

basis functions

model

trend component

cyclical component

c = [t.^0, t, t.^2, t.^3, ...
cos(2*pi*t/12), sin(2*pi*t/12)] \ y;

T = @(t) c(1) + c(2)*t + c(3)*t.^2 + ...
c(4)*t.^3; % trend

C = @(t) c(5)*cos(2*pi*t/12) + ...
c(6)*sin(2*pi*t/12); % cycle

figure; plot(ty, y, 'b-', ty,T(t),'g-', ...
ty,T(t)+C(t),'r-');

xaxis(1980, 2012, 1980:10:2010);
xlabel('year '); ylabel('CO_2')
legend(' data', ' trend', ' trend+cycle',...

'location','nw');

1980 1990 2000 2010
330

340

350

360

370

380

390

400

year

C
O

2

 data
 trend

1980 1990 2000 2010
330

340

350

360

370

380

390

400

year

C
O

2

 data
 trend
 trend+cycle

	Rutgers University�School of Engineering��Fall 2011��14:440:127 - Introduction to Computers for Engineers��Sophocles J. Orfani

