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Week  1  - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week  2  - Basics – operators, functions, program flow (ch. 2 & 3)
Week  3  - Matrices (ch. 4)
Week  4  - Plotting – 2D and 3D plots (ch. 5)
Week  5  - User-defined functions (ch. 6)
Week  6  - Input-output processing (ch. 7)
Week  7  - Program flow control & relational operators (ch. 8)
Week  8  - Matrix algebra – solving linear equations (ch. 9)
Week  9  - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 - Numerical methods – data fitting – part II (ch. 12)

Weekly Topics

Textbook: H. Moore, MATLAB for Engineers, 2nd ed.,  Prentice Hall, 2009



Numerical Methods
Data Fitting – part II

• data fitting with polynomials – polyfit, polyval
• examples: Moore’s law, 
• Hank Aaaron, 
• US census data
• least-squares polynomial regression
• least-squares with other basis functions
• examples:  exponential models
• trigonometric basis functions
• trigonometric with polynomial trends (CO2 data)



>> doc polyfit
>> doc polyval

Polynomial data fitting - review polyfit, polyval

polynomial P(x) is represented by its coefficients p



Given N data points {xi, yi}, i=1,2,…,N,  find an M-th degree
polynomial that best fits the data – (polyfit)

% design procedure:

xi = [x1,x2,...,xN];
yi = [y1,y2,...,yN];

p = polyfit(xi,yi,M);

y = polyval(p,x);

evaluate P(x) at a given vector x

M = polynomial order

if N = M+1, the polynomial
interpolates the data 

if N > M+1, the polynomial
provides the best fit in 
a least-squares sense 



xi = [1, 3, 4, 6, 9];
yi = [4, 4, 7, 11, 19];

x = linspace(0,10,101);

for M = [1,2,3,4]
p = polyfit(xi,yi,M);

y = polyval(p,x);

figure; 
plot(x,y,'r-', xi,yi,'b.', 'markersize',25);
yaxis(-2,22,0:5:20); xaxis(0,10,0:2:10);
xlabel('x'); title('polynomial fit'); 
legend([' fit, {\itM} = ',num2str(M)],...

' data', 'location','se'); 
end
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 fit, M = 3
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 fit, M = 4
 data



% year    ti   H
% ---------------
1954    1    13
1955    2    27
1956    3    26
1957    4    44
1958    5    30
1959    6    39
1960    7    40
1961    8    34
1962    9    45
1963   10    44
1964   11    24
1965   12    32
1966   13    44
1967   14    39
1968   15    29
1969   16    44
1970   17    38
1971   18    47
1972   19    34
1973   20    40
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 y = 37x-37
 data



A = load('aaron.dat');

ti = A(:,2); H = A(:,3);
yi = cumsum(H);

p = polyfit(ti,yi,1)

p =
37.2617  -39.8474

t = linspace(1,20, 101);
y = polyval(p,t);

plot(t,y,'r-', ...
ti,yi,'b.', ...
'markersize', 18);
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 y = 37x-37
 data



Given N data points {xi, yi}, i=1,2,…,N, the following data 
models can be reduced to linear fits using an appropriate 
transformation of the data:

>> p = polyfit(xi,log(yi),1);   % exponential
>> y = exp(polyval(p,x));   % y=exp(a*x+log(b))
>> a = p(1);
>> b = exp(p(2));    % so that y = b*exp(a*x)
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 fit
 data

yi        ti
-----------------
2.300e+003   1971
2.500e+003   1972
4.500e+003   1974
2.900e+004   1979
1.340e+005   1982
2.750e+005   1985
1.200e+006   1989
3.100e+006   1993
4.300e+006   1996
7.500e+006   1997
8.800e+006   1997
9.500e+006   1999
2.130e+007   1999
2.200e+007   1999
4.200e+007   2000
5.430e+007   2003
1.059e+008   2003
2.200e+008   2003
5.920e+008   2004
2.410e+008   2006
2.910e+008   2006
5.820e+008   2006
6.810e+008   2006
7.890e+008   2007
1.700e+009   2006
2.000e+009   2008

Moore’s law from set-4

fitted model:
f(t) = b*2.^(a*(t-t1));



Y = load('transistor_count.dat');

y = Y(:,1);  t = Y(:,2);                        

t1 = t(1);

p = polyfit(t-t1, log2(y), 1); 

p =
0.5138  10.5889    % b = 2^p(2) = 1.5402e+003

f = 2.^(polyval(p,t-t1));

semilogy(t,f,'r-', t,y,'b.', 'markersize',18)

fitted model:
f(t) = b * 2.^(a*(t-t1)) = 2.^(a*(t-t1)+log2(b));

% a = p(1), log2(b) = p(2) --> b = 2^(p(2))



1800 1840 1880 1920 1960 2000
1

2

3

4

5

6

t

lo
g(

po
p)

US Population

 

 

 quadratic fit
 data

1800 1840 1880 1920 1960 2000
0

100

200

300

400

t

po
pu

la
ti

on
, m

ill
io

ns

US Population

 

 
 fit
 data

% source: Wikipedia
% US population in millions
%
%  ti       yi
% -------------
1790     3.929
1800     5.237
1810     7.240
1820     9.638
1830    12.866
1840    17.069
1850    23.192
1860    31.443
1870    38.558
1880    49.371
1890    62.980
1900    76.212
1910    92.229
1920   106.022
1930   123.202
1940   132.165
1950   151.326
1960   179.323
1970   203.212
1980   226.546
1990   248.710
2000 281.422
2010 308.746



A = load('uspop.dat');

ti = A(:,1); yi = A(:,2);

p = polyfit(ti,log(yi),2)     % quadratic fit

p =
-0.0001    0.2653 -266.4672

t = linspace(1790, 2010, 201);
y = exp(polyval(p,t));

figure; plot(t, log(y), 'r-', ...
ti,log(yi),'b.','markersize',18);

figure; plot(t, y,'r-', ...
ti,yi,'b.','markersize',18);



A = load('uspop.dat');

ti = A(:,1); yi = A(:,2); t1 = ti(1);

p = polyfit(ti,yi,2)           % quadratic fit
p1 = polyfit(ti-t1,yi,2)       % t1 = 1790

t = linspace(1790, 2010, 201);
y = polyval(p,t);
y1 = polyval(p1,t-t1);        % shifted origin

norm(y-y1)                    % = 7.7100e-011

plot(t, y,'r-', ti,yi,'b.','markersize',18);

>> num2str([p',p1'],'%12.2e')

ans =
6.78e-003   6.78e-003

-2.44e+001  -1.32e-001
2.20e+004   6.51e+000
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exponential fit

polynomial fit



A p = y p = A \ y

How does polyfit work? Consider a straight-line 
fit, y = ax+b, to N data points {xi, yi}, i=1,2,…,N

polynomial
regression

overdetermined & inconsistent linear 
system of 5 equations in 2 unknowns

least-squares
solution

A is the design matrix
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xi = [1, 3, 4, 6, 9]';     % column vectors
yi = [4, 4, 7, 11, 19]';

A = [xi, ones(5,1)];       % design matrix
p = A\yi
p =

1.9892
-0.1505

p = polyfit(xi,yi,1)
p =

1.9892   -0.1505

x = linspace(1,9,91);
y = polyval(p,x);

plot(x,y,'r', xi,yi,'b.','markersize',20);



A p = yp = A \ y

overdetermined & inconsistent linear 
system of 5 equations in 3 unknowns

least-squares
solution

Quadratic fit,  y = ax2 + bx + c
to N data points {xi, yi}, i=1, 2,…, N

polynomial
regression
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xi = [1, 3, 4, 6, 9]';       % column vectors
yi = [4, 4, 7, 11, 19]';

A = [xi.^2, xi, xi.^0];      % design matrix
p = A\yi
p =

0.1905
0.0476
3.3333

p = polyfit(xi,yi,2)
p =

0.1905  0.0476  3.3333

x = linspace(1,9,91);
y = p(1)*x.^2 + p(2)*x + p(3);   % polyval(p,x)

plot(x,y,'r', xi,yi,'b.','markersize',20);



least-squares
solution

||A p – y||2 = min ⇒ p = A \ y

assumes that  M+1  ≤ N and that A has full rank,
conditions  that are typically satisfied in practice
(then, p is unique least-squares solution)

other norms – such as L1 – are used in practice 
but don’t have a closed-form solution – several
MATLAB toolboxes exist for such problems 

Euclidean L2 norm

equivalent solutions: p = (A'A)\(A'*y)
p = pinv(A)*y

polynomial
regression



regression 
with other 
basis functions

The data model is assumed to be a linear 
combination of known basis functions,
such as exponential, trigonometric, etc:

and the objective is to determine the coefficients 
ci to fit N data points {xi, yi}, i = 1, 2,…, N, 
where again we must assume  M+1 ≤ N

Polynomial fitting is a special case using the
monomial basis: 1, x, x^2, …, x^M

Design procedure: set up the design matrix A and
solve the overdetermined linear system A c = y

A c = y
c = A \ y



Example:  M = 3, N = 5

A c = y
c = A \ y

regression 
with other 
basis functions

design matrix, A data, ycoeffs, c



Examples of 
other models 
reducible to the 
standard form



regression 
with other 
basis functions

Example 1:  modeling of temperature 
variations in a city over 24 months

ti   yi
----------
0   42.7
1   46.7
2   59.1
3   69.5
4   81.0
5   80.7
6   83.2
7   72.0
8   67.1
9   52.6

10   43.7
11   40.9
12   38.6
13   48.8
14   57.2
15   71.2
16   77.5
17   79.8
18   82.3
19   76.3
20   61.5
21   53.0
22   41.5
23   37.3

basis functions



N = length(ti);

A = [ones(N,1), cos(2*pi*ti/12), sin(2*pi*ti/12)]; 

c = A\yi

c =
61.0083
-20.3333
8.5565

f = @(t) c(1) + c(2) * cos(2*pi*t/12) + ...
c(3) * sin(2*pi*t/12);

t = linspace(0,24,241);

plot(t,f(t),'r', ti,yi,'b.','markersize',25);

24x3 design matrix

estimated parameters
estimated model
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Example 2:
xi   yi
--------
1.0  5.7
1.4  4.8
1.9  4.7
2.1  4.9
2.7  5.0
3.0  5.3
3.3  5.6
3.9  6.3
4.2  6.4

basis functions

A = [1./xi, xi];
c = A\yi
c =

4.3350
1.2950

x = linspace(1,4.2, 100); 
y = c(1)./x + c(2)*x;

plot(x,y,'r-', xi,yi,'b.');

estimated model
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xi   yi
---------
1.0  0.18
1.4  0.21
1.9  0.21
2.1  0.20
2.7  0.20
3.0  0.19
3.3  0.18
3.9  0.16
4.2  0.16

basis functions

A = [1./xi, xi];
c = A\(1./yi)
c =

4.3012
1.2858

x = linspace(1,4.2, 100); 
y = 1./(c(1)./x + c(2)*x);

plot(x,y,'r-', xi,yi,'b.');

estimated model

Example 3:
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%  ti      Vi
% ------------
0.00   2.0684
0.05   1.6970
0.10   1.4921
0.15   1.2633
0.20   1.1564
0.25   0.9048
0.30   0.8943
0.35   0.6919
0.40   0.7459
0.45   0.5832
0.50   0.5065
0.55   0.4657
0.60   0.2966
0.65   0.3131
0.70   0.2082
0.75   0.2399
0.80   0.1516
0.85   0.0928
0.90   0.1930
0.95   0.2144
1.00   0.1036

Example 4:

set-11
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A = load('capacitor.dat');

ti = A(:,1); Vi = A(:,2);    

p = polyfit(ti,log(Vi),1);  % p = [-2.92,0.70];

a = -p(1), V0 = exp(p(2))

a =
2.9170

V0 =
2.0154

t = linspace(0,1,101);
V = exp(polyval(p,t));

% V = exp(p(1)*t+p(2));

plot(t,V,'r-',...
ti,Vi,'b.',...
'markersize',18);



Example 5:  copper data

set-11

Ti     ki
---------------

1      28.7
2      57.3
3      85.5
4     113
5     138
6     159
7     177
8     189
9     195

10     196
11     193
12     185
13     176
14     166
15     156
16     145
18     124
20     105
25      68
30      43
35      29
40      20.5
45      15.3

basis functions

model



Y = load('copper.dat');

ti = Y(:,1); 
ki = Y(:,2);
yi = 1./ki;

A = [1./ti, ti, ti.^2, ti.^3];    % basis

c = A\yi;    % fit 1/k to model

T = linspace(0,50,101);

k = T./(c(1) + c(2)*T.^2 + c(3)*T.^3 + ...
c(4)*T.^4);

plot(T,k,'r-', ti,ki,'b.','markersize',18);
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Example 6:  CO2 emissions

% year   month   decimal      average     trend
% -----------------------------------------------
1980     1    1980.042      338.33      337.70
1980     2    1980.125      339.04      337.99
1980     3    1980.208      339.36      338.02
1980     4    1980.292      339.74      338.12
1980     5    1980.375      340.16      338.64
1980     6    1980.458      339.73      338.94
1980     7    1980.542      338.20      339.05
1980     8    1980.625      336.99      339.24
1980     9    1980.708      336.81      339.20
1980    10    1980.792      337.57      338.91
1980    11    1980.875      338.69      339.03
1980    12    1980.958      339.41      339.19
...    ...     ...           ...         ...

2011     7    2011.542      389.04      390.27
2011     8    2011.625      387.76      390.48
2011     9    2011.708      388.04      390.80

file: co2.dat
on sakai

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_gl.txt
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Y = load('co2.dat');       % file on sakai

y = Y(:,4); 
t = (0:length(y)-1)';
ty = t/12 + 1980;          % rescale time

figure; plot(ty, y, 'b-'); 
xaxis(1980, 2012, 1980:10:2010);
xlabel('year     '); ylabel('CO_2');

basis functions

model

trend component

cyclical component



c = [t.^0, t, t.^2, t.^3, ...
cos(2*pi*t/12), sin(2*pi*t/12)] \ y;

T = @(t) c(1) + c(2)*t + c(3)*t.^2 + ...
c(4)*t.^3;                  % trend

C = @(t) c(5)*cos(2*pi*t/12) + ...
c(6)*sin(2*pi*t/12);        % cycle

figure; plot(ty, y, 'b-', ty,T(t),'g-', ...
ty,T(t)+C(t),'r-'); 

xaxis(1980, 2012, 1980:10:2010);
xlabel('year     '); ylabel('CO_2')
legend(' data', ' trend', ' trend+cycle',...

'location','nw');
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